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Abstract

This work provides a characterization of Quasistationary Distributions
(QSDs) for Markov chains with a unique absorbing state and an irre-
ducible set of non-absorbing states. As is well known, every QSD has
an associated absorption parameter describing the exponential tail of the
absorption time under the law of the process with the QSD as the initial
distribution. The analysis associated with the existence and representa-
tion of QSDs corresponding to a given parameter is according to whether
the moment generating function of the absorption time starting from any
non-absorbing state evaluated at the parameter is finite or infinite, the
finite or infinite moment generating function regimes, respectively. For
parameters in the finite regime, it is shown that when they exist, all QSDs
are in the convex cone of a Martin entry boundary associated with the pa-
rameter. The infinite regime corresponds to at most one parameter value
and at most one QSD. In this regime, when a QSD exists, it is unique and
can be represented by a renewal-type formula. Several applications to the
findings are presented, including revisiting previously established results
using the developments in this work.

1 Introduction

Let Z+ = {0, 1, 2, . . . } the set of nonnegative integers, and N = {1, 2, 3, . . . }
the set of natural numbers. We also write R+ for the set of nonnegative real
numbers.

Consider a Markov chain X = (Xn : n ∈ Z+) on a state space which is a
disjoint union of the set S and the singleton {∆}, and where S is either finite
or countably infinite. Let p denote the transition function for X. As usual, we
write Pµ and Eµ for the probability and expectation associated with X under
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the initial distribution µ, with Px and Ex serving as shorthand for Pδx and Eδx ,
respectively.

For x ∈ S ∪ {∆}, let

τx = inf{n ∈ N : Xn = x}, (1.1)

and
0τx = inf{n ∈ Z+ : Xn = x}. (1.2)

We work under the following additional hypotheses:

HD-1. τ∆ < ∞ Px-a.s. for some x ∈ S.

HD-2. The restriction of p to S is irreducible.

As a result, ∆ is a unique absorbing state. We therefore refer to τ∆ as the
absorption time.

Definition 1.1 (QSD). Let HD-1,2 hold. A probability measure ν on S is a
Quasistationary Distribution (QSD) if

Pν(Xn ∈ · | τ∆ > n) = ν(·) for all n ∈ Z+. (1.3)

As is well-known, [28, Theorem 2] ν is a QSD if and only if it is a “Quasi
limiting distribution” in the sense that there exists some probability measure µ
on S so that

lim
n→∞

Pµ(Xn ∈ · | τ∆ > n) = ν. (1.4)

The idea of a limiting conditional distribution traces back to as early as
1931 by Wright [30] in the discussion of gene frequencies in finite populations.
Later, Bartlett introduced the notion of “quasi stationarity” [3] and coined the
term “quasi-stationary distribution” in the context of a birth and death process
[4]. Yaglom [31] was the first who showed explicitly that the (1.4) holds for
a non-degenerate subcritical branching process starting from any deterministic
initial population, with a limit independent of the initial population. To this
day, results of this type are referred to as Yaglom limits.

An important property of a QSD is the following [22, Theorem 2.2]. Suppose
ν is a QSD. Then there exists some λ > 0

Pν(τ∆ > n) = e−λn. (1.5)

That is under Pν , τ∆ is geometric with parameter 1− e−λ. We refer to λ as the
absorption parameter associated with ν.

The definition of a QSD immediately leads to the following characterization
of QSD, see e.g., [22].

Proposition 1.1. Let HD-1,2 hold. A probability measure ν on S is a QSD
if and only if there exists some λ > 0 such that∑

i∈S
ν(i)p(i, j) = e−λν(j), j ∈ S. (1.6)

In this case, ν is a QSD with absorption parameter λ.
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Two comments are in place:

1. Since S is irreducible, if ν is a QSD then ν(i) > 0 for all i ∈ S.

2. The analogous statement to Proposition 1.1 in the continuous-time setting
is generally false, see [27, Section 3.3].

In light of (1.5), the following is a necessary condition for the existence of a
QSD:

HD-3. There exists β > 0 such that Ex[exp(βτ∆)] < ∞ for some (equivalently
all) x ∈ S.

We note that the statement in parenthesis holds due to the assumed irre-
ducibility of p. Clearly, HD-3 is not a sufficient condition, as the following very
simple example shows:

Example 1.1. Let p be any irreducible transition function on S. Let p be defined
as follows. Fix λcr > 0, and define a transition function p on S∪{∆} by letting
p(x, y) = e−λcrp(x, y) when x, y ∈ S and p(x,∆) = 1 − e−λcr . In terms of
sample paths, p and p are related as follows. Let Y be a MC corresponding to p,
and let τ∆ be a geometric random variable with parameter 1−e−λcr , independent
of Y. Now for t ∈ Z+ set

Xn = Yn1{τ∆>n}.

Then X = (Xn : n ∈ Z+) is a MC with transition function p, and (1.5) holds
with λ = λcr and any distribution ν on S. However, for every probability
measure ν on S, Pν(Xn ∈ · | τ∆ > n) = Pν(Yn ∈ ·) and so ν is a QSD for p if
and only if it is a stationary distribution for p, and this holds if and only if p is
positive recurrent.

Definition 1.2. Let HD-1,2,3 hold.

1. The critical absorption parameter λcr is given by

λcr = sup{λ > 0 : Ex[e
λτ∆ ] < ∞ for some x ∈ S}, (1.7)

2. A parameter λ ∈ (0, λcr] is in the finite MGF regime if Ex[exp(λτ∆)] < ∞
for some x ∈ S.

3. The critical absorption parameter λcr is in the infinite MGF regime if
Ex[exp(λcrτ∆)] = ∞ for some x ∈ S.

The constant eλcr also appears in the literature [8] as the convergence pa-
rameter for p, and the constant e−λcr is also known convergence norm, a gen-
eralization of the Perron-Frobenius root. The infinite MGF regime is referred
to as the R-recurrent case with R = eλcr . We decided not to use these terms
as our analysis covers all absorption parameters, not just λcr, and also because
R-recurrence is not a criterion for the existence or non-existence of QSDs but
rather an indicator for which approach to apply, something which is simpler to
describe through the two regimes presented.

As an immediate corollary, we have the following:
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Corollary 1.1. Let HD-1,2,3 hold. Then

1. λcr ∈ (0,∞)

2. If ν is a QSD with absorption parameter λ, then λ ≤ λcr.

Proof. Clearly HD-3 implies λcr > 0, and the irreducibility of S implies that
for every x ∈ S, pn(x, x) > 0, hence - by induction - Px(τ∆ > kn) ≥ (pn(x, x))k,
which in turn implies eλcr ≤ (pn(x, x))−1/n and so λcr < ∞.

For the second assertion, if ν is a QSD, with absorption parameter λ, (1.5)
implies that for any ϵ > 0, Ex[(e

λ/(1 + ϵ))τ∆ ] < ∞, and the result follows.

If ν is a QSD with absorption parameter λ then

Eν [τ∆]
(1.5)
=

1

1− e−λ
Cor. 1.1

≥ 1

1− e−λcr
.

For this reason, a QSD with absorption parameter λcr is called a minimal QSD:
it minimizes the expected absorption time among all initial distributions that
are QSDs.

We close this section with the following observation.

Proposition 1.2. Let λ ∈ (0, λcr]. Then for every x ∈ S, Ex[exp(λτx), τx <
τ∆] ≤ 1. Moreover,

1. If Ex[exp(λτ∆)] < ∞ then the inequality is strict;

2. If Ex[exp(λcrτ∆)] = ∞ and Ex[exp(λcrτ∆), τ∆ < τx] < ∞ for some x ∈ S,
then Ex[exp(λcrτx), τx < τ∆] = 1 for all x ∈ S.

Proof. Pick λ < λcr. Then Ex[exp(λτ∆)] < ∞. Partitioning according to
τx < τ∆ or τx > τ∆ and using the strong Markov property, we have

Ex[exp(λτ∆)] = Ex[exp(λτx), τx < τ∆]Ex[exp(λτ∆)] + Ex[exp(λτ∆), τ∆ < τx].

As the left-hand side is finite and the second term on the right-hand side is
strictly larger than zero, the first statement holds, with all terms on the right-
hand side finite. Moreover, we can write

Ex[exp(λτ∆)] =
Ex[exp(λτ∆), τ∆ < τx]

1− Ex[exp(λτx), τx < τ∆]
. (1.8)

Both assertions now follow from the monotone convergence theorem by letting
λ ↑ λcr.

2 Results: Discrete-Time

2.1 Infinite MGF Regime

Throughout this section, we assume that the hypotheses HD-1,2,3 hold.
The main result of this section is a necessary and sufficient condition for the

existence and uniqueness of a minimal QSD in the infinite MGF regime.
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Theorem 2.1. Suppose λcr is in the infinite MGF regime. Then

1. There exists a minimal QSD if and only if for some x ∈ S

Ex[exp(λcrτ∆ ∧ τx)] < ∞ (2.1)

In this case, there exists a unique minimal QSD, given by the formula

νcr(x) =
eλcr − 1

Ex[exp(λcrτ∆), τ∆ < τx]
, x ∈ S. (2.2)

2. If, in addition to (2.1),

Ex[exp(λcrτx)τx, τx < τ∆] < ∞ for some x ∈ S, (2.3)

and p is aperiodic, then (1.4) holds for any finitely supported µ, with
ν = νcr.

As mentioned below Definition 1.2 λcr is in the infinite MGF regime if and
only if p is R-recurrent with R = eλcr [8][9]. In this regime, p is called R-
recurrent if (2.3) holds, and under this additional assumption, Theorem D of
[8] provides an infinite dimensional version of Perron-Frobenius: existence of
unique (up to scalar multiples) of left and right eigenvectors for p with eigen-
value 1/R, as well as convergence. However, R-positive recurrence does not
imply the existence of a QSD as, in general, the left eigenvector cannot be nor-
malized to a probability measure. The main result of [9] gives conditions that
imply R-positive recurrence with a left eigenvector, which is a minimal QSD and
convergence results. Nevertheless, in the infinite MGF regime, R-positive recur-
rence is not necessary for the existence of a minimal QSD, see Proposition 8.2.
Moreover, minimal QSDs also exist in the finite MGF regime, see Proposition
8.1 and Theorem 8.1.

Next, we provide a condition equivalent to (2.1), which may be easier to
verify directly in some cases. For K ⊊ S, define the hitting time

τK = inf{n ∈ N : Xn ∈ K}. (2.4)

Proposition 2.1. Suppose that K ⊊ S is nonempty and finite and that for
some x ̸∈ K,

Ex[exp(λcrτ∆ ∧ τK)] < ∞. (2.5)

Then there exists z ∈ K so that

Ez[exp(λcrτ∆ ∧ τz)] < ∞.

The next result is a weak version in discrete time of the main result in [19].
The main differences are that the authors worked in continuous time, did not
assume irreducibility, and gave an explicit geometric bound on the convergence
rate without identifying the QSD. We expand this discussion when we present
a continuous-time version, Theorem 7.2.
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Theorem 2.2. Suppose that there exists some λ̄ > 0 and a nonempty finite
K ⊊ S such that both following conditions hold:

Ex[exp(λ̄τ∆)] = ∞ for some x ∈ S; (2.6)

sup
x ̸∈K

Ex[exp(λ̄τ∆ ∧ τK)] < ∞. (2.7)

Then

1. λcr ∈ (0, λ̄], λcr is in the infinite regime, and (2.1), (2.3) and (2.5)hold.

2. There exists a unique QSD. This QSD is minimal and is given by (2.2).

If, in addition, p is aperiodic and there exists some x0 ∈ S and n0 ∈ N such
that

inf
x∈S

Px(τx0
< τ∆)

Px(τ∆ > n0)
> 0, (2.8)

then (1.4) holds for any initial distribution µ.

Proposition 2.2. Suppose S is finite. Then (2.6), (2.7) and (2.8) hold with
λ̄ = λcr and K = S − {x0}, where x0 ∈ S is any element maximizing S ∋ x →
p(x,∆).

2.2 Finite MGF Regime

The finite state space case is settled by Proposition 2.2. Therefore, in addition
to HD-1,2,3, in this section, we will also impose the following:

HD-0. S is countably infinite.

2.2.1 Martin Boundary Representation

Definition 2.1. Let λ > 0 be in the finite MGF regime. For x ∈ S, define

1. The Green’s function

Gλ(x, y) = Ex[
∑

0≤s<τ∆

exp(λs)δy(Xs)]

=
Ex[exp(λτy), τy < τ∆]

1− Ey[exp(λτy), τy < τ∆]
.

(2.9)

Then Gλ(x, ·) is a finite measure on S with total mass

Gλ(x,1) =
Ex[exp(λτ∆)]− 1

eλ − 1
.

2. The normalized kernel Kλ(x, ·), a probability measure on S in the second
variable,

Kλ(x, y) =
Gλ(x, y)

Gλ(x,1)
=

eλ − 1

Ex[exp(λτ∆)]− 1
× Ex[exp(λτy), τy < τ∆]

1− Ey[exp(λτy), τy < τ∆]
.

(2.10)
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3. A sequence x = (xn : n ∈ N) of elements in S is λ-convergent if for every
y ∈ S, limn→∞Kλ(xn, y) exists. If x is λ-convergent, we denote the limit
(probability or sub-probability) measure by Kλ(x, ·).

4. A sequence x is λ,∞-convergent if it is λ-convergent and limn→∞ xn = ∞.

Note that any eventually constant sequence in S is λ-convergent, but not
λ,∞-convergent and that due to the fact Kλ(·, ·) ∈ (0, 1] and a diagonal argu-
ment, every unbounded sequence has a λ,∞-convergent subsequence.

Definition 2.2 (Martin Compactification).

1. The λ,∞-convergent sequences x and x′ are λ-equivalent if Kλ(x, ·) =
Kλ(x′, ·), writing [x] for the equivalence class and Kλ([x], ·) for Kλ(x, ·).

2. The Martin Boundary ∂λM is the set of equivalence classes of λ,∞-
convergent sequences.

3. Define the metric ρλ on Mλ = S ∪ ∂λM as follows:

ρλ(a, b) =

∞∑
n=1

1

2n
(
|δa,n − δb,n|+ d(Kλ(a, n),Kλ(b, n))

)
,

where d(i, j) = |i−j|
1+|i−j| .

4. Let Sλ = {[x] ∈ ∂λM : Kλ([x], ·) is a QSD}.

The next theorem is a Choquet-type result, stating that the metric space
introduced above characterizes all QSDs through the ways the process may
“come from infinity”.

Theorem 2.3. Let λ > 0 be in the finite MGF regime. Then, there exists a
QSD with absorption parameter λ if and only if Sλ is not empty. In this case,
µ is a QSD with absorption parameter λ if and only if there exists a probability
measure F̄µ on ∂λM satisfying F̄ (Sλ) = 1 and

µ(y) =

∫
Kλ([x], y)dF̄µ([x]), y ∈ S.

Analogous results in the context of positive harmonic functions are classical
results in potential theory, e.g., [23] and our proof of Theorem 2.3 is primarily
based on the [23] with the appropriate changes. Nevertheless, to the best of our
knowledge, the present work is the first to introduce the Martin boundary in
the context of QSDs and the first attempt to characterize all QSDs in the finite
moment regime.

Theorems 2.1 and 2.3 provide a complete description of all QSDs for a given
Markov chain.
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2.2.2 Conditions for Existence of QSDs

In this section, we focus on the behavior of the generating function at infinity
to show sufficient conditions for the existence and the non-existence of a QSD.

Theorem 2.4. Let λ > 0 be in the finite MGF regime. Then

1. If there exists λ′ ∈ (0, λ) satisfying limx→∞Ex[exp(λ
′τ∆)] = ∞ then for

every λ,∞-convergent sequence x, Kλ(x, ·) is a QSD with absorption pa-
rameter λ.

2. If supx Ex[exp(λτ∆)] < ∞, then there are no QSDs with absorption pa-
rameter λ.

Corollary 2.1. Let

λ0 = inf{λ ∈ (0, λcr) : lim
x→∞

Ex[exp(λτ∆)] = ∞},

with the convention inf ∅ = ∞. Then for every λ ∈ (λ0, λcr] there exists a QSD
with absorption parameter λ.

Note that the corollary yields the existence of a minimal QSD, regardless of
whether it is in the infinite or finite MGF regime.

A tightness argument, a key element in the proof of the first part of the
theorem and the corollary, has appeared in [10]. The proof of the second part of
the theorem relies on results to be developed independently in the next section.

Definition 2.3. Let λ > 0 be in the finite MGF regime and for x, y ∈ S define

Cλ(x, y) =
Ex[exp(λτ∆), τy < τ∆]

Ex[exp(λτ∆)]− 1
.

With additional assumptions on p, the existence and uniqueness of QSDs
can be obtained through analysis of Cλ.

Proposition 2.3. Assume that for every y ∈ S,∑
z

p(z, y) < ∞. (2.11)

Let λ > 0 be in the finite MGF regime. Let (xn : n ∈ N) be a sequence with
limn→∞ xn = ∞.

1. If lim infn C
λ(xn, y) > 0 for some y ∈ S, then there exists a QSD with

absorption parameter λ.

2. If lim infn C
λ(xn, y) ≥ 1 for all y ∈ S, then there exists a unique QSD

with absorption parameter λ given by

ν(y) =
eλ − 1

Ey[exp(λτ∆), τ∆ < τy]
.
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Corollary 2.2. Assume that (2.11) holds. If the set A = {x : p(x,∆) > 0} is
finite, then for every λ ∈ (0, λcr) there exists a QSD with absorption parameter
λ.

We close this section with a result connecting the Martin boundary approach
Proposition 2.3.

Corollary 2.3. Let λ > 0 be in the finite MGF regime and suppose that (2.11)
holds. Let [x] ∈ ∂λM . Then the following are equivalent:

1. Kλ([x], ·) satisfies (1.6) and is not identically zero.

2. There exists y ∈ S and a sequence (xn : n ∈ N) ∈ [x] such that limn→∞ Cλ(xn, y) >
0.

Note that under the equivalent conditions in the corollary and the irre-
ducibility of S, Kλ([x], ·) is strictly positive, and limn→∞ Cλ(xn, y) exists and
is in (0,∞) for all y ∈ S and (xn : n ∈ N) ∈ [x]. Moreover, Kλ([x], ·) can be
normalized to a probability measure which is then necessarily a QSD.

2.3 Auxiliary Results

Proposition 2.4. The family of distributions of eλcrτ∆ under Px, x ∈ S, is
not uniformly integrable.

The proposition has the following immediate corollary utilizing the fact that
any finite set of integrable RVs are uniformly integrable and stochastically dom-
inated.

Corollary 2.4. 1. Suppose that S is finite. Then λcr is in the infinite
regime.

2. Suppose that there exists a sequence (xn : n ∈ N) of elements in S and
that for every n ∈ N the distribution of τ∆ under Pxn

is stochastically
dominated by its distribution under Pxn+1

. If λcr is in the finite regime,
limn→∞Exn [exp(λcrτ∆)] = ∞.

Proof of Proposition 2.4. We argue by contradiction. Suppose that
limn→∞ supx∈S Ex[exp(λcrτ∆), τ∆ > n] = 0. Then for every ϵ ∈ (0, 1), there
exists n0 such that supx Ex[exp(λcrτ∆), τ∆ > n0] < ϵ/2. As a result of the
Markov property, it follows that supx Ex[exp(λcrτ∆), τ∆ > kn0] ≤ (ϵ/2)k. And
so, for every x ∈ S,

∞∑
k=0

ϵ−kEx[exp(λcrτ∆), τ∆ > kn0] < ∞.

This implies

∞∑
k=0

ϵ−(k+1)Ex[exp(λcrτ∆), kn0 < τ∆ ≤ (k + 1)n0] < ∞
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But when τ∆ ≤ (k + 1)n0, ϵ
−(k+1) ≥ ϵ−τ∆/n0 , and so we have

∞∑
k=0

Ex[(ϵ
−1/n0eλcr )τ∆ , kn0 < τ∆ ≤ (k + 1)n0] < ∞.

That is, taking eλ̃cr = ϵ−1/n0eλcr > eλcr , we have that Ex[e
λ̃crτ∆ ] < ∞, contra-

dicting the definition of λcr.

Next, we provide sufficient conditions for (2.1) to hold.

Proposition 2.5. Let x ∈ S and suppose that at least one of the following
conditions hold:

1. The probability distributions r → Px(Xr ∈ · | τ∆ ∧ τx > r) are tight.

2. There exists x ∈ S such that infy∈S Py(τx < τ∆) > 0.

Then supx Ex[exp(λcrτ∆ ∧ τx)] < ∞.

Note that if the set S of states z satisfying p(z,∆) > 0 is finite, then the
second condition automatically holds.

Proof of Proposition 2.5. Let λ ∈ (0, λcr). Summing by parts, for any nonneg-
ative bounded random variable Z, we have

Ex[exp(λτ∆ ∧ τx)Z] = eλEx[Z] + (eλ − 1)

∞∑
r=1

eλrEx[Z1{τ∆∧τx>r}]. (2.12)

By monotone convergence, this holds for any nonnegative random variable Z.
When taking Z = 1 we have

Ex[exp(λτ∆ ∧ τx)] = eλ + (eλ − 1)

∞∑
r=1

eλrPx(τ∆ ∧ τx > r). (2.13)

Now take
Z = EX(τ∆∧τx)[exp(λ

0τ∆)].

The strong Markov property gives that the left-hand side of (2.12) is equal to
Ex[exp(λτ∆)]. As for the right-hand side, from the Markov property,

Ex[Z, τ∆ ∧ τx > r|Fr] = 1{τ∆∧τx>r}EX(τ∆∧τx)[exp(λ
0τ∆)].

In our case,

Ex[Z, τ∆ ∧ τx > r|Fr] ≥ 1{τ∆∧τx>r}PX(r)(τx < τ∆)Ex[exp(λτ∆)].

Therefore

Ex[Z, τ∆ ∧ τx > r] ≥ Ex[exp(λτ∆)]Ex[1{τ∆∧τx>r}PX(r)(τx < τ∆)]

= Ex[exp(λτ∆)]Ex[PX(r)(τx < τ∆)|τ∆ ∧ τx > r]Px(τ∆ ∧ τx > r).
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Assuming the first condition, the tightness condition. For every ϵ > 0 there
exists some finite set Kϵ such that P (X(r) ∈ Kϵ|τ∆ ∧ τx > r) ≥ (1 − ϵ). Let
c2 = c2(ϵ) = miny∈Kϵ

Py(τx < τ∆) > 0. Therefore, we have that

Ex[PX(r)(τx < τ∆)|τ∆ ∧ τx > r] ≥ c1, (2.14)

where c1 = (1 − ϵ)c2. If we assume the second condition instead, then we can
use the infimum in the condition as c1 in (2.14). Thus, under either condition,
we have

Ex[exp(λτ∆)] ≥ eλEx[EX(τ∆∧τx)[exp(λ
0τ∆)]] + c1Ex[exp(λτ∆)](e

λ − 1)

∞∑
r=1

eλrPx(τ∆ ∧ τx > r)

(2.13)
= eλEx[EX(τ∆∧τx)[exp(λ

0τ∆)]] + c1Ex[exp(λτ∆)](Ex[exp(λτ∆ ∧ τx)]− eλ)

≥ c1Ex[exp(λτ∆)](Ex[exp(λτ∆ ∧ τx)]− eλ).

Divide both sides by Ex[exp(λτ∆)] to obtain the bound

Ex[exp(λτ∆ ∧ τx)] ≤ eλ +
1

c1
.

The result now follows from monotone convergence.

3 Proof of the results of Section 2.1

We begin with some results we need.

3.1 Potential Theoretic Results

Proposition 3.1. Let λ ∈ (0, λcr].

1. For x ∈ S define the measure µx through

µx(y) = Ex[
∑

s<τx∧τ∆

exp(λs)δy(Xs)], y ∈ S

=
Ex[exp(λτy), τy < τx ∧ τ∆]

1− Ey[exp(λτy), τy < τx ∧ τ∆]

(3.1)

Then

(µxp)(z) = e−λµx(z) + e−λδx(z) (Ex[exp(λτx), τx < τ∆]− 1) , z ∈ S.
(3.2)

2. For z ∈ S define the function hz : S → [0,∞) by letting

hz(x) = Ex[exp(λτz), τz < τ∆] (3.3)

Then
(phz)(x) = e−λhz(x) + p(x, z)(hz(z)− 1) (3.4)

12



Note that Proposition 1.2 and the irreducibility guarantee that both νx and
hz defined in the proposition are strictly positive and finite on S.

Proof. For the first claim,

µxp(z) =
∑
y

∞∑
s=0

Ex[1τ∆>s1τx>s exp(λs)δy(Xs)]p(y, z)

= e−λ
∞∑
s=0

eλ(s+1)Ex[1τ∆>s1τx>sδz(Xs+1)]

= e−λ (µx(z)− δx(z) + δx(z)Ex[exp(λτx), τx < τ∆])

= e−λµx(z) + e−λδx(z) (Ex[exp(λτx), τx < τ∆]− 1) .

For the second claim, observe that

hz(x) = Ex[exp(λτz), τz < τ∆]

= eλp(x, z) +
∑
y ̸=z

eλp(x, y)Ey[exp(λτz), τz < τ∆]

= eλ
∑
y∈S

p(x, y)hz(y) + eλp(x, z)(1− hz(z)).

3.2 The Reverse Chain

Suppose that ν is a QSD with absorption parameter λ. We introduce the time-
reversed transition function q on S:

q(y, x) = ν(x)p(x, y)
eλ

ν(y)
, x, y ∈ S. (3.5)

Note that q has no absorbing states, inherits the irreducibility from p, and
reverses the arrow of time. Write Q·, E

Q
· for the probability and expectation

for the Markov Chain on S corresponding to the transition function q. We have
the following simple lemma obtained from products of (3.5).

Lemma 3.1. Let x = (x0, x1, . . . , xn) be a sequence in S. Write
←
x = (xn, xn−1, . . . , x0),

the reverse sequence. Then

n−1∏
j=0

p(xj , xj+1) = e−λn
ν(xn)

ν(x0)

1∏
j=n

q(xj , xj−1).

In particular

Px0(X[0,n] = x) = e−λn
ν(xn)

ν(x0)
Qxn(X[0,n] =

←
x), (3.6)
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and

Px0(X[0,n] = x, τ∆ = n+ 1) = e−λn
ν(xn)p(xn, 0)

ν(x0)
Qxn(X[0,n] =

←
x). (3.7)

To introduce the next result, we need some additional notations. Let

Iν(x) = eλ
∑
z

ν(z)p(z,∆)Qz(
0τx < ∞). (3.8)

Proposition 3.2. Let ν be a QSD for p with absorption parameter λ. Then
Iν(x) ≤ eλ − 1 and equality holds if and only if one of the following holds:

1. q is recurrent.

2. There’s a bijection σ : S → Z+ ∪ {−1} with σ(∆) = −1 and the following
properties

(a) For all x ∈ S, p(x, y) > 0 if σ(y) = σ(x)− 1.

(b) For all x ∈ S, p(x, y) = 0 if σ(y) < σ(x)− 1.

A chain satisfying the latter set of conditions is also known as skip-free [11].
Such chains are the simplest to study. Complete characterization of all QSDs
for such chains is given in Section 6.1.

Proof. Since ν(S) = 1, we have

Iν(x) ≤ eλ
∑
z

ν(z)p(z,∆) = eλ
∑
z

ν(z)(1−
∑
y ̸=∆

p(z, y)) = eλ(1−e−λ) = eλ−1.

(3.9)
The inequality in (3.9) is an equality if and only if for every z with p(z,∆) > 0,
Qz(

0τx < ∞) = 1. This clearly holds if q is recurrent or if item 2 in the
statement of the Proposition 3.2 holds. Conversely, if neither occurs, then there
exists x, z ∈ S with p(z,∆) > 0 such that Qz(

0τx < ∞) < 1.

As an application of Lemma 3.1, we have

Proposition 3.3. Let ν be a QSD for p with absorption parameter λ. Then

1. Ex[exp(λτx), τx < τ∆] = Qx(τx < ∞).

2. Ex[exp(λτ∆), τ∆ < τx] =
Iν(x)
ν(x) .

3. Ex[exp(λτ∆)] =
Iν(x)
ν(x) E

Q
x [N(x)] where, N(x) =

∑∞
s=0 δx(Xs).

4. Ex[exp(λτx)τx, τx < τ∆] = EQ
x [τx, τx < ∞].

Note that under the assumptions of the proposition, q is recurrent if and
only if Ex[exp(λcrτx), τx < τ∆] = 1 for some x ∈ S, and if this equality holds,
it is positive recurrent if and only if Ex[exp(λcrτx)τx, τx < τ∆] < ∞ for some
x ∈ S with a stationary distribution π(x) = 1

EQ
x [τx]

= 1
Ex[exp(λcrτx)τx,τx<τ∆] for

all x ∈ S.

14



Proof. For n ∈ Z+, x ∈ S, letAx(n) be the set of paths x = (x0, x1, · · · , xn) with
x0 = x. Also, letA−x (n) ⊂ Ax(n) the subset of paths satisfying x1, . . . , xn−1 ̸= x,
and finally, let A−x,x(n) be the subset of A−x (n) consisting of paths satisfying
xn = x.

For the first assertion, using (3.5) and (3.6), for 0 < i < n we have

Ex[exp(λτx), τx < τ∆] =

∞∑
n=0

∑
x∈A−

x,x(n)

eλnPx(X[0,n] = x)

=

∞∑
n=0

∑
x∈A−

x,x(n)

Qx(X[0,n] =
←
x)

= Qx(τx < ∞)

For the second assertion, consider z ∈ S. Using (3.7), we obtain

Ex[exp(λτ∆), τ∆ < τx] =

∞∑
n=0

∑
x∈A−

x (n)

eλ(n+1)Px(X[0,n] = x, τ∆ = n+ 1)

=
∑
z∈S

eλ

ν(x)
ν(z)p(z,∆)Qz(

0τx < ∞)

=
Iν(x)

ν(x)

For the third assertion, using (3.7) for z ∈ S

Ex[exp(λτ∆)] =

∞∑
n=0

∑
x∈Ax(n)

eλ(n+1)Px(X[0,n] = x, τ∆ = n+ 1)

=
∑
z∈S

eλ

ν(x)
ν(z)p(z,∆)Qz(x0 = x)

=
∑
z∈S

eλ

ν(x)
ν(z)p(z,∆)Qz(

0τx < ∞)EQ
x [N(x)]

=
Iν(x)

ν(x)
EQ

x [N(x)]
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To prove the last assertion, using (3.6)

EQ
x [τx, τx < ∞] =

∞∑
n=1

n
∑

X∈A−
x,x(n)

Qx(X[0,n] = x)

=

∞∑
n=1

n
∑

X∈A−
x,x(n)

eλnPx(X[0,n] = x)

=

∞∑
n=1

neλn
∑

X∈A−
x,x(n)

Px(X[0,n] = x)

= Ex[τx exp(λτx), τx < τ∆]

Proposition 3.2 and Proposition 3.3-2 give the following:

Corollary 3.1. Let ν be a QSD with absorption parameter λ. Then for all
x ∈ S

ν(x) =
Iν(x)

Ex[exp(λτ∆), τ∆ < τx]
≤ eλ − 1

Ex[exp(λτ∆), τ∆ < τx]
. (3.10)

The transition function q may be useful in the study of convergence to a
specific QSD. Indeed, if ν is a QSD with absorption parameter λ and q is
the transition function for the reverse process as defined in (3.5), then for any
probability measure µ on S and any y ∈ S

Pµ(Xn = y) = e−λnν(y)EQ
y [

µ

ν
(Xn)].

This implies

Pµ(Xn = y|τ∆ > n) = ν(y)
EQ

y [µν (Xn)]

EQ
ν [µν (Xn)]

(3.11)

Corollary 3.2. Suppose that µ is a probability measure satisfying supy∈S
µ
ν (y) <

∞. Then, each of the conditions below implies

lim
n→∞

Pµ(Xn ∈ · | τ∆ > n) = ν(y).

1. q is positive recurrent and aperiodic.

2. q is transient and limy→∞
ν
µ (y) exists and is strictly positive.

Of course, both parts of the corollary follow from (3.10). The first part
is a straightforward application of the ergodic theorem for positive recurrent
and aperiodic Markov chains, e.g., [29, Chapter 3], and the second is a trivial
application of the transience assumption.
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3.3 Proof of Theorem 2.1

Uniqueness and necessity. Suppose first that ν is a minimal QSD. We construct
the reverse chain corresponding to (3.5). Proposition 3.3-3 gives that for every

x ∈ S, ∞ = Ex[exp(λτ∆)] =
Iν(x)
ν(x) E

Q
x [N(x)]. The ratio on the righthand side

is finite due to (3.9), and so EQ
x [N(x)], the expected number of visits to x by

the reverse chain, is infinite. As a result, q is recurrent. Proposition 3.2-1 then
gives Iν(x) = eλcr − 1, and then Proposition 3.3-2 gives the representation (2.2)
for ν. This proves the uniqueness of a minimal QSD and also implies (2.1) due
to Proposition 1.2.
Existence and sufficiency. Suppose that (2.1) holds. Then by Proposition 1.2,
Ex[exp(λcrτx), τx < τ∆] = 1, and therefore the measure µx from Proposition 3.1

with λ = λcr satisfies (1.6). Since µx(S) =
Ex[exp(λcrτ∆ ∧ τx)]− 1

eλcr − 1
, µx can be

normalized to a probability measure we denote by µ̄x. Proposition 1.1 implies
that µ̄x is a minimal QSD.
Convergence. Since q is already recurrent, the additional assumption (2.3) and
Proposition 1.2-4 give that q is positive recurrent. And then, we apply the first
part of Corollary 3.2.

3.4 Proof of Proposition 2.1

The statement is trivial when |K| = 1. We will show that if |K| ≥ 2, there
exists x0 ∈ K so that

Ex0
[exp(λcrτ∆ ∧ τK−{x0})] < ∞, (3.12)

and so by iterating, we can eventually reduce to the case |K| = 1. We, therefore,
turn to prove (3.12). For λ < λcr and x ∈ S,

∞ > Ex[exp(λτ∆)] = Ex[exp(λτ∆ ∧ τK)1{τK<τ∆}]EX(τK)[exp(λτ∆)]

+ Ex[exp(λτ∆ ∧ τK)1{τ∆<τK}].

Let vm(λ) denote the minimum of the lefthand side over x ∈ K, and let
x = xm ∈ K be a minimizer. Then,

vm(λ) ≥ Exm
[exp(λτ∆ ∧ τK)1{τK<τ∆}]vm(λ),

and therefore Exm
[exp(λτ∆ ∧ τK)1{τK<τ∆}] ≤ 1. Let λ ↗ λcr along any

sequence (λn : n ∈ N). Then there is a subsequence, which we also denote by
(λn : n ∈ N) so that νm(λn) is constant. The Monotone Convergence Theorem
then yields that for some xm ∈ K,

Exm [exp(λcrτ∆ ∧ τK)1{τK<τ∆}] ≤ 1.

Note that this is a version of Proposition 1.2 but with the singleton replaced by
a finite set. Consider any shortest path from xm to x ∈ K − {xm} which does
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not return to xm. Since each such path has a positive probability under Pxm ,
it follows that Pxm(τxm = τK , τK < τ∆) < Pxm(τK < τ∆). With this, we have

ρm = Exm [exp(λcrτ∆ ∧ τK)1{τxm=τ∆∧τK}] < 1.

For λ < λcr the strong Markov property gives

∞ > Exm [exp(λτ∆ ∧ τK−{xm})] = ρmExm [exp(λτ∆ ∧ τK−{xm})]

+ Exm [exp(λτ∆ ∧ τK)1{τxm>τ∆∧τK}].

Therefore

Exm
[exp(λτ∆ ∧ τK−{xm})] ≤

Exm [exp(λτ∆ ∧ τK)1{τxm>τ∆∧τK}]
1− ρm

≤ Exm
[exp(λcrτ∆ ∧ τK)]

1− ρm
.

The result follows by applying the monotone convergence theorem on the left-
hand side.

3.5 Proof of Theorem 2.2 and Proposition 2.2

We begin by presenting a sufficient condition for λcr to be in the infinite MGF
regime.

Proposition 3.4. Suppose that K ⊊ S is nonempty and finite and that for
some λ̄ > λcr

sup
x

Ex[exp(λ̄τ∆ ∧ τK)] < ∞. (3.13)

Then λcr is in the infinite MGF regime.

Proof. We argue by contradiction assuming Ex[exp(λcrτ∆)] < ∞ for all x ∈ S.
For x ∈ S, let T1(x) be a random variable whose distribution is the same as
τ∆ ∧ τK under Px and let T2 be independent of T1(x) and equal to the sum
of |K|, independent random variables (T1,k : k ∈ K) with T1,k are distributed
according to τ∆ under Pk. Then the distribution of τ∆ under Px is stochastically
dominated by T1(x) + T2. Therefore

Ex[exp(λcrτ∆)1τ∆>2n] ≤ E[exp(λcr(T1(x) + T2)), T1(x) + T2 > 2n]

≤ E[exp(λcr(T1(x) + T2))(1{T1(x)>n} + 1{T2>n})]

≤ E[exp(λcrT2)]Ex[exp(λcrT1(x)), T1(x) > n]

+ E[exp(λcrT1(x))]Ex[exp(λcrT2), T2 > n]

= (∗),

with all expectations on the righthand side being finite. Let δ = λ̄− λcr. Then
on the event {T1(x) > n}

exp(λcrT1(x)) = exp(λ̄T1(x)) exp(−δT1(x)) ≤ exp(λ̄T1(x))e
−δn.
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Therefore

E[exp(λcrT1(x)), T1(x) > n] ≤ E[exp(λ̄T1(x))]e
−δn ≤ c1e

−δn,

where c1 < ∞ is the supremum in (3.13). Then,

(∗) ≤ E[exp(λcrT2)]c1e
−δn + c1E[exp(λcrT2), T2 > n].

This upper bound is independent of x and tends to 0 as n → ∞. Thus the
the distributions of eλcrτ∆ under Px as x ranges over S is uniformly integrable,
which is in contradiction to Proposition 2.4.

Proof of Theorem 2.2. We first show that λcr is in the infinite MGF regime.
From (2.6) we learn that λcr ≤ λ̄. If an equality holds, then λcr is in the infinite
MGF regime. Otherwise, λcr < λ̄, and the claim follows from Proposition 3.4.

With this, Proposition 2.1 guarantees that both conditions of Theorem 2.1
hold and therefore, there exists a unique minimal QSD ν, given by (2.2). How-
ever, the assumptions yield more.

Let z ∈ K be as in Proposition 2.1, and define h(x) = hz(x) = Ex[exp(λcrτz), τz <
τ∆]. Proposition 1.2 implies that h(z) = 1, and therefore Proposition 3.1 gives

ph = e−λcrh. (3.14)

We show that h is also bounded. Indeed, for every x ∈ S,

h(x) ≤ Ex[exp(λcrτK), τK < τ∆] max
x∈K

h(x) < ∞.

Therefore, νh can be normalized to be a probability measure. Let h̄ = h/(
∑

x νh)
and let π = νh̄ be a probability measure. Let ph be the kernel on S defined by

ph(x, y) =
eλcr

h(x)
p(x, y)h(y).

Then (3.14) guarantees that ph is a transition function on S. Moreover,

πph = eλcrν
h̄

h
ph = νh̄ = π,

and therefore p is positive recurrent and π is its stationary distribution. A
similar calculation shows that q is positive recurrent, and therefore Proposition
3.3-4 guarantees that the condition (2.3) holds.

To show that no other QSD exists, note that if ν′ is a QSD with survival
parameter λ ≤ λcr, then∑

x,y

(ν′h)(x)ph(x, y) =
∑
x

ν′(x)p(x, y)h(y),

and the sum is finite because ν′h is a finite measure. Summing over x first
yields e−λ

∑
x ν
′(y)h(y), while summing over y first yields e−λcr

∑
x ν
′(x)h(x).

Therefore, λ = λcr and the claim follows.
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It remains to prove the convergence result. From the construction of ph we
have that for any initial distribution µ,

Pµ(Xn = y|τ∆ > n) =

∑
x∈S µ(x)h(x)Ph

x (Xn = y)/h(y)∑
x∈S µ(x)h(x)Eh

x [
1

h(Xn)
]

=
1

h(y)

Ph
µ̄ (Xn = y)

Eh
µ̄ [

1
h(Xn)

]
,

(3.15)
where µ̄ is the probability measure and µ̄(x) = (µh)(x)/

∑
y(µh)(y).

Next, from (3.14) we conclude that (eλcrnh(Xn)1{τ∆>n} : n ∈ Z+) is a
martingale. In particular, for every n ∈ Z+,

h(x) = Ex[exp(λcrτx0
∧ n)h(Xτx0∧n), τx0

∧ n < τ∆].

As h is bounded, and so is the mapping x → Ex[exp(λcrτx0
), τx0

< τ∆] (this
function is equal to 1 at x0 because q is recurrent, and is bounded by the
same argument leading to the boundedness of h), it follows from the monotone
convergence theorem that we can take n → ∞ and obtain

h(x) = Ex[exp(λcrτx0), τx0 < τ∆]h(x0).

In particular, h(x) ≥ Px(τx0
< τ∆)h(x0), and then the condition (2.8) implies

that for some constant c > 0, depending only on x0 and n0, h(x) ≥ cPx(τ∆ > n0)
for all x ∈ S. Equivalently, l(x) = Eh

x [
1

h(Xn0
) ] ≤ c−1. Because this function is

bounded, we can use the Markov property and the ergodic theorem for positive
recurrent aperiodic Markov chains to conclude that

lim
n→∞

Eh
µ̄ [

1

h(Xn)
] = lim

n→∞
Eh

µ̄ [l(Xn−n0
)] =

∑
x

π(x)l(x).

By iterating the stationarity of π, the righthand side is equal to
∑

x π(x)/h(x) =∑
x ν(x)h̄(x)/h(x) = h̄(y)/h(y) (the righthand side is a constant independent of

y). The ergodic theorem also gives limn→∞ Ph
µ̄ (Xn = y) = π(y). Therefore, the

limit as n → ∞ of the righthand side of (3.15) is π(y)

h(y)h̄(y)/h(y)
= ν(y), completing

the proof.

Proof of Proposition 2.2. We omit the trivial case |S| = 1 and assume |S| ≥ 2.
Since S is finite and irreducible, (2.8) automatically holds for every n and

x0 ∈ S.
Because any finite set of integrable RVs is uniformly integrable, Proposition

2.4 implies Ex[exp(λcrτ∆)] = ∞ for some x ∈ S (and therefore for all x ∈ S).
This gives (2.6).

Next, since S is irreducible, there exists y0 ∈ S different from x0 such that
p(x0, y0) > 0. In particular 1 − p(x0,∆) ≥ p(x0, x0) + p(x0, y0) > p(x0, x0).
The choice of x guarantees Px(τ∆ > n) ≥ (1 − p(x0,∆))n ≥ (p(x0, x0) +
p(x0, y0))

n. Since for any λ < λcr,
∑∞

n=0 e
λnPx(τ∆ > n) is finite, it follows

that eλcr (p(x0, x0) + p(x0, y0)) ≤ 1, and in particular, p(x0, x0)e
λcr < 1. More-

over,
Px0

(τ∆ ∧ τK > n) = p(x0, x0)
n,

20



and because p(x0, x0)e
λcr < 1, the series

∑∞
n=0 e

λcrnPx0(τ∆∧τK > n) converges,
which gives Ex0

[exp(λcrτ∆ ∧ τK)] < ∞. Thus, (2.7) holds.

4 Proof of the Results of Section 2.2.1

Classically, Martin Boundary theory provides a compactification of the state
space of a transient Markov Chain through a set of positive harmonic functions.
These functions describe the tail of the chain: under the new topology, the chain
converges almost surely, with the limit viewed as where the process “exits” the
state space. The books by Woess [29] and by Kemeny, Snell, and Knapp [16]
are good sources for additional details on Martin boundary theory. In our work,
we borrow the ideas and first construct a similar compactification of the state
space, then apply analysis similar to the work by Sawyer [23].

Proposition 4.1. Let λ > 0 be in the finite MGF regime. Let Mλ and ρλ be
as in Definition 2.2. Then (Mλ, ρλ) is a compact metric space.

Proof. It is enough to show that every sequence (xn : n ∈ N) in this space has
a convergent subsequence. Indeed, either

1. Some elements in S or in ∂λM appear infinitely often; or

2. Every element in S appears finitely often, and so does every element in
∂λM . Here, at least one of the two alternatives holds:

(a) There exists a subsequence we also denote by (xn : n ∈ N) consisting
entirely of elements in S and satisfying limn→∞ xn = ∞.

(b) There exists a subsequenence we also denote by (xn : n ∈ N) consist-
ing entirely of elements in ∂λM .

In case 1, we have a constant subsequence with an obvious limit. In case 2, we
proceed according to the subcases. The case 2-(a) clearly has a λ,∞-convergent
subsequence with a limit in ∂λM . To treat 2-(b), for each n, let x̄n be an
element in S satisfying ρλ(x̄n, xn) < 2−n. Without loss of generality, we may
assume limn→∞ x̄n = ∞. Clearly it has a convergent subsequence (x̄nk

: k ∈ N)
with limit [x] in ∂λM . By the triangle inequality, ρλ(xnk

, [x]) → 0.

Proof of Theorem 2.3. Let Mλ = {µ : S → [0,∞) : µp ≤ e−λµ}. For any
µ ∈ Mλ and n ∈ N

µ = µ− µ(eλp)n + µ(eλp)n.

The difference on the right is equal to µ(I − eλp)(I +(eλp)+ · · ·+(eλp)n−1)
and therefore increases pointwise as n → ∞ to∑

x

(µ(I − eλp))(x)Gλ(x, y) =
∑
x

(µ(I − eλp))(x)Gλ(x,1)Kλ(x, y).
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The second term decreases pointwise to a limit we denote by µ∞, which satisfies
µ∞(eλp) = µ∞. Thus, letting fµ(x) = µ(I − eλp)(x)Gλ(x,1) we have

µ(y) =
∑
x∈N

fµ(x)K
λ(x, y) + µ∞(y), y ∈ S.

We say that µ ∈ Mλ is a potential if it has a representation of the form

µ(y) =
∑
x∈S

fµ(x)K
λ(x, y)

for some nonnegative fµ which is not identically zero. Thus, we proved that ev-
ery µ ∈ Mλ is a sum of a potential and a function µ∞ satisfying

∑
y∈S µ∞(y) ∈

[0,∞].
The first sum is an integral with respect to a Borel measure on the compact

metric space S ∪ ∂λM :

µ(y) =

∫
S∪∂λM

Kλ(x, y)dFµ(x).

Where Fµ is absolutely continuous with respect to the counting measure on
N. Since Kλ(x,1) = 1 for every x ∈ S, it follows that Fµ(1) = µ(1).

Let µ ∈ Mλ. If µ(eλp)n → 0, then µ∞ = 0 and µ is a potential. Conversely,
if µ is a potential, then

µ(y) =

∞∑
t=0

(gµ(e
λp)t)(y),

a convergent series. For every n ∈ N, (µ(eλp)n)(y) =
∑∞

t=n(gµ(e
λp)t)(y) which

decreases pointwise to 0 as n → ∞, as it is the tail of a convergent series.
Next, let µ, µ′ ∈ Mλ. Then (µ ∧ µ′)p ≤ (µp) ∧ (µ′p) ≤ e−λ(µ ∧ µ′) and so

µ ∧ µ′ ∈ Mλ. Moreover, if µ′ is a potential, it follows that

(µ ∧ µ′)(eλp)n ≤ µ′(eλp)n → 0,

and so µ ∧ µ′ is a potential.
Next, let µ be a QSD with absorption parameter λ. Let Dn = {1, . . . , n},

and let µn = µ∧Kλ(n1Dn
, ·). Clearly, µn ↗ µ, and µn is a potential. Therefore,

µn(y) =

∫
S∪∂λM

Kλ(x, y)dFn(x),

for some Borel measure Fn on Mλ supported on N. Also, Fn(1) = µn(1) ↗
µ(1) = 1. Without loss of generality we may assume Fn(1) > 0, and therefore
normalize Fn to be a probability measure by letting F̄n = Fn/Fn(1),

µn = Fn(1)

∫
S∪∂λM

Kλ(x, y)dF̄n(x).
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As Borel probability measures on a compact metric space, (F̄n : n ∈ N)
contains a weakly convergent subsequence. Let F̄ denote the limit. Then we
have

µ(y) =

∫
S∪∂λM

Kλ(x, y)dF̄ (x).

Since µ and F̄ are both probability measures,

1 = µ(1) =

∫
Kλ(x,1)dF̄ (x) ≤ F̄ (Mλ) = 1.

Since Kλ(x,1) ≤ 1 for all x ∈ Mλ, we have that

F̄ ({x : Kλ(x,1) < 1}) = 0.

Next, since

0 = µ− µ(eλp) =

∫
S∪∂λM

(Kλ(x, ·)(I − eλp))(y)dF̄ (x).

and so,

F̄ ({x : (Kλ(x, ·)(I − eλp))(y) > 0 for some y ∈ S}) = 0.

Since by definition for x ∈ S, Kλ(x, ·)(I − eλp))(x) > 0 it follows that

F̄ (

{
[x] ∈ ∂λM : Kλ([x], ·) is a QSD

}
) = 1.

5 Proof of the Results of Section 2.2.2

5.1 Preliminary Results

We now present a number of results that culminate the proof of the Theorem
2.4. Suppose λ > 0 in the finite MGF regime for Proposition 5.1, Corollary 5.1,
and Proposition 5.2.

Proposition 5.1. Fix x ∈ S. Then

1. For every y ∈ S,

(Kλ(x, ·)p)(y) = e−λ
(
Kλ(x, y)− δx(y)

Gλ(x,1)

)
.

2.

PKλ(x,·)(τ∆ > n) =

(
1− Ex[exp(λτ∆ ∧ n)− 1]

Ex[exp(λτ∆)− 1]

)
e−λn, n ∈ Z+. (5.1)
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Proof. The first assertion is obtained by conditioning on the first step. As for
the second,

Gλ(x,1)PKλ(x,·)(τ∆ > n) =
∑
y∈S

∞∑
s=0

Ex[1{s<τ∆} exp(λs)δy(Xs)]Py(τ∆ > n)

= exp(−λn)Ex[

∞∑
s=0

exp(λ(s+ n))1{τ∆>s+n}]

= exp(−λn)

( ∞∑
s=n

exp(λs)Ex[1{τ∆>s}]

)

= exp(−λn)

Gλ(x,1)− Ex[

(τ∆−1)∧(n−1)∑
s=0

exp(λs)]


= exp(−λn)

(
Gλ(x,1)− Ex[exp(λτ∆ ∧ n)− 1]

eλ − 1

)
The result now follows because Gλ(x,1) = Ex[exp(λτ∆)− 1]/(eλ − 1).

Corollary 5.1. Let x = (xn : n ∈ N) satisfy limn→∞ xn = ∞. Then the
distribution of τ∆ under PKλ(xn,·) converges to Geom(1 − e−λ) if and only if
limn→∞Exn

[exp(λτ∆)] = ∞.

Proof. Suppose limn→∞Exn [exp(λτ∆)] = ∞, then from (5.1), PKλ(xn,·)(τ∆ >

t) → e−λt for every t ∈ Z+. Otherwise, by switching to a subsequence, we may
assume that limn→∞Exn

[exp(λτ∆)] exists and is finite. Denote this limit by c,
and note that c ≥ eλ > 1. Since for every t ∈ N, Exn

[exp(λτ∆ ∧ t)]− 1 ≥ eλ− 1,
it follows that

lim inf
n→∞

Exn
[exp(λτ∆ ∧ t)]− 1

Exn
[exp(λτ∆)]− 1

≥ eλ − 1

c
> 0,

and so by (5.1),

lim sup
n→∞

PKλ(xn,·)(τ∆ > t) ≤ (1− eλ − 1

c
)e−λt.

Proposition 5.2. 1. Let x = (xn : n ∈ N) be a λ,∞-convergent sequence.
Then limn→∞Kλ(xn, ·) is a QSD if and only if (Kλ(xn, ·) : n ∈ N) is
tight.

2. Moreover, under the equivalent condition of part (1), limn→∞Gλ(xn,1) =
∞.

Proof. We begin with the first assertion. Proposition 5.1, limn→∞ xn = ∞ and
Fatou’s lemma give

(Kλ(x, ·)p)(y) ≤ e−λKλ(x, y).
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Clearly, if Kλ(x, ·) is a QSD, then Kλ(x,1) = 1 which implies tightness.
Conversely, tightness implies Kλ(x,1) = 1, and the reverse inequality holds due
to the argument given in the proof of Corollary 2.1, thus Kλ(x, ·) is a QSD.

It remains to show that tightness is equivalent to the reverse inequality. If the
sequence is tight, then we obtain the reverse inequality repeating the argument
in the proof of Corollary 2.1 with νn replaced by Kλ(xn, ·). We omit details.
Conversely, if the reverse inequality holds, we turn to the second assertion. Use
Proposition 5.1 and the tightness, we obtain

lim
n→∞

PKλ(xn,·)(τ∆ > t) = PKλ(x,·)(τ∆ > t), t ∈ Z+.

However, as Kλ(x, ·) is a QSD with absorption parameter λ, the righthand
side is e−λt. The conclusion now follows from Corollary 5.1.

We are ready to prove the theorem.

5.2 Proof of Theorem 2.4 and Corollary 2.1

Proof of Theorem 2.4. We prove the two assertions in the order of appear-
ance. Without loss of generality any sequence X = (xn : n ∈ N) satisfying
limn→∞ xn = ∞ has a λ,∞-convergent subsequence. Pick any such subse-
quence, abusing notation, and denote it by x. Next,

1. This key argument appeared in [10]. By assumption and Proposition 5.1,

EKλ(xn,·)[exp(λ
′τ∆)] ≤

∞∑
t=0

eλ
′tPKλ(xn,·)(τ∆ > t)

≤
∞∑
t=0

e(λ
′−λ)t

=
1

1− eλ′−λ .

We denote the quantity on the righthand side by c. Now pick ϵ > 0 and
a finite K = K(ϵ), such that Ex[exp(λτ∆)] > c/ϵ for all x ∈ Kc. The
lefthand side is clearly bounded below by Kλ(xn,K

c)c/ϵ, and therefore
Kλ(xn,K

c) ≤ ϵ. Therefore the sequence (Kλ(xn, ·) : n ∈ N) is tight.
Hence, Proposition 5.2 guarantees that Kλ(x, ·) is a QSD.

2. We will argue by contradiction utilizing the reverse process introduced in
Section 3.2. Assume that ν is a QSD with absorption parameter λ > 0.
Rewriting 3.3-3 we obtain

ν(x)Ex[exp(λτ∆)] = Iν(x).

By assumption, the lefthand side is summable, and so is the righthand
side. Using the definition of Iν(x) (3.8) we then have∑

x

Iν(x) =
∑
z∈S

ν(z)p(z,∆)(
∑
x

Qz(
0τx < ∞)).
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The inner summation is the expectation of the number of states the path
of the reverse process visits, which is always infinite (regardless of whether
q is recurrent or - as in this case - transient), and since ν is strictly positive
there exists at least one z ∈ S with p(z,∆) > 0, the contradiction follows.

Proof of Corollary 2.1. From Theorem 2.4, there exists a QSD with survival
parameter λ for all λ ∈ (λ0, λcr). What remains to be shown is then the existence
of a minimal QSD. To do that, suppose λ0 < λn ↘ λcr and let νn be a QSD
with absorption parameter λn, whose existence is guaranteed from the theorem.
Without loss of generality, we may assume that the sequence (νn(·) : n ∈ N)
converges pointwise to some limit. Denote this limit by ν. Fatou’s lemma gives

νp ≤ e−λcrν.

To prove the reverse inequality, it is sufficient to show that (νn : n ∈ N) is tight.
Indeed, if the sequence is tight, then for any ϵ > 0, there exists a finite set K
with νn(K) > 1− ϵ for all n and so

e−λnνn(y) = (νnp)(y) =
∑
x∈K

νn(x)p(x, y) +
∑
x∈Kc

νn(x)p(x, y).

Denote the second sum on the righthand side by H(y) and observe that
H(y) ≥ 0 and sums up to a number less than or equal to ϵ because p is sub-
stochastic. From bounded convergence we then have

e−λcrν ≤ νp+ ϵ,

and as ϵ is arbitrary the result follows. The key to proving the tightness rests
on the fact that τ∆ ∼ Geom(1− e−λn) under Pνn

. As the probability of success
is increasing in n, for any fixed λ ∈ (λ0, λn), the sequence of MGFs, evaluated
at λ, Eνn [exp(λτ∆)], is decreasing. Thus,

Eν1
[exp(λτ∆)] ≥ Eνn

[exp(λτ∆)] ≥ νn(K
c) inf

x∈Kc
Ex[exp(λτ∆)]. (5.2)

Denote the lefthand side of (5.2) by c. Pick ϵ > 0. Now use the definition of
λ0 to pick a finite K = K(ϵ) so that infx∈Kc Ex[exp(λτ∆)] > c/ϵ. This gives
νn(K

c) ≤ ϵ, establishing tightness.

5.3 Proof of Proposition 2.3 and Corollary 2.2

We begin by observing the following simple statements regarding Cλ(x, y) de-
fined in Definition 2.3.

First, by the FKG inequality [12]

Ex[exp(λτ∆), τy < τ∆] ≥ Ex[exp(λτ∆)]Py(τy < τ∆),
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while on the other hand, Ex[exp(λτ∆), τy < τ∆] ≤ Ex[exp(λτ∆)]. Therefore the
coefficient Cλ(x, y) satisfies

Px(τy < τ∆)

1− 1
Ex[exp(λτ∆)]

≤ Cλ(x, y) ≤ 1

1− 1
Ex[exp(λτ∆)]

. (5.3)

Next,

Kλ(x, y) =
eλ − 1

Ex[exp(λτ∆)]− 1
× Ex[exp(λτy), τy < τ∆]

1− Ey[exp(λτy), τy < τ∆]

= (eλ − 1)
Cλ(x, y)

Ex[exp(λτ∆), τy < τ∆]
× Ex[exp(λτy), τy < τ∆]

1− Ey[exp(λτy), τy < τ∆]

= Cλ(x, y)
eλ − 1

Ey[exp(λτ∆)](1− Ey[exp(λτy), τy < τ∆])

= Cλ(x, y)
eλ − 1

Ey[exp(λτ∆), τ∆ < τy]
,

(5.4)

where the second line follows directly from the definition, and in the third we
canceled the expectation of eλτy on the event τy < τ∆ starting from x from both
the numerator and the denominator.

Proof of Proposition 2.3. Recall the probability measure on S defined by (2.10),
denoted by Kλ(x, ·). Without loss of generality, we assume that (Kλ(xn, ·) : n ∈
N) converges pointwise to some limiting function Kλ(x, ·). By either condition
on S, Kλ(x, ·) is not identically zero, and by Fatou’s lemmaKλ(x,1) ≤ 1. Next,
for every y ∈ S, assumption (2.11) allows to apply the dominated convergence
theorem to conclude that

Kλ(x, ·)p(y) = lim
n→∞

Kλ(xn, ·)p(y) = e−λKλ(x, y).

This proves the first assertion. Consider now the second assertion. Let

ν = Kλ(x,·)
Kλ(x,1)

. Then, ν is a QSD. Moreover, since by assumption and (5.4),

Kλ(x, y) ≥ eλ−1
Ey [exp(λτ∆),τ∆<τy ]

and Kλ(x,1) ≤ 1, it follows that

ν(y) ≥ eλ − 1

Ey[exp(λτ∆), τ∆ < τy]
.

Yet Corollary 3.1 gives the reverse inequality. Hence, ν is given by the formula
in the statement of the theorem. The uniqueness follows from the corollary too.
Let ν̃ be a QSD, then Corollary 3.1 gives ν̃ ≤ ν, and since both are probability
distributions, the equality follows.

Proof of Corollary 2.2. Fix 0 < λ < λcr. Clearly for every x ̸∈ A, Ex[exp(λτ∆), τA <
τ∆] = Ex[exp(λτ∆)]. But Ex[exp(λτ∆), τA < τ∆] ≤

∑
y∈A Ex[exp(λτ∆), τy <

τ∆], and therefore along any subsequence tending to infinity, there exists some
y such that Cλ(x, y) ≥ 1

|A| infinitely often, the result follows from Proposition

2.3-(1).
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Proof of Corollary 2.3. Let (xn : n ∈ N) ∈ [x]. First assume Kλ([x], ·) is
not identically zero. Pick y ∈ S such that Kλ([x], y) > 0. Thus, (5.4) gives
limn→∞ Cλ(xn, y) ∈ (0,∞).

For the converse, since by assumption limn→∞ Cλ(xn, y) > 0, (5.4) guaran-
tees that Kλ([x], y) > 0. In addition, Proposition 5.1 gives∑

z∈S
Kλ(xn, z)p(z, y) = e−λ

(
Kλ(xn, y)−

δxn
(y)

Gλ(xn,1)

)
. (5.5)

Since Kλ(·, ·) is nonnegative and bounded, the assumption (2.11) allows to in-
voke dominated convergence to conclude thatKλ([x], ·) = e−λKλ([x], ·). There-
fore, we proved that Kλ([x], ·) is not identically zero, and satisfies (1.6).

6 Examples

In this section, we provide several simple applications of our results.

6.1 Downward Skip-Free Chains

Consider a chain on S = Z+ and ∆ = {−1}, with the property that for every
x ∈ Z+, and l ∈ {1, . . . , x + 1}, we have p(x, x − l) > 0 if and only if l = 1.
We will further assume that the chain satisfies Assumption HD-1, HD-2, and
HD-3. Since by construction τ∆ ≥ x, Corollary 2.1 implies the existence of a
QSD for every absorption parameter λ ∈ (0, λcr]. Moreover, Proposition 3.2-2
(with σ taken as the identity) and Corollary 3.1 guarantee that for each λ in
this range, there exists a unique QSD with absorption parameter λ, νλ, given
by the righthand side of (3.10). One notable case is of discrete time birth and
death chains on Z+ ∪ {−1} absorbed at −1.

6.2 Generalized Cyclic Transfer

This is a concrete example of a skip-free chain and probably the simplest closed-
form example. This process generalizes the cyclic transfer process from [15].

Assume S = Z+, let q ∈ (0, 1) and µ be a probability distribution on S with
unbounded support (if µ has finite support, all derivation in this section hold
verbatim with S = {0, 1, . . . ,maxSupp(µ)}). For x ∈ S, consider the transition
function p on S ∪ {∆} illustrated in Figure 1 and given by

p(x, x− 1) = 1 x ∈ N

p(0,∆) = q

p(0, x) = (1− q)µ(x) x ∈ S

Let φµ be the moment generating function for µ:

φµ(λ) =

∞∑
j=0

µ(j)eλj . (6.1)
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△ 0 1 2 3 · · · x

1 1 1 1 1

q

(1− q)µ(x)

Figure 1: Cyclic Transfer

We will assume that φµ(λ) < ∞ for some λ > 0. Thus, HD-1, HD-2 and
HD-3 hold. Let λ ∈ (0, λcr). Observe that

E0[exp(λτ∆)] = eλq + eλ(1− q)φµ(λ)E0[exp(λτ∆)].

Therefore

E0[exp(λτ∆)] =
eλq

1− eλ(1− q)φµ(λ)
. (6.2)

Hence, λcr is the unique solution to

(1− q)eλφµ(λ) = 1. (6.3)

This implies that λcr is in the infinite MGF regime.
Next, since the process is downward-skip free, we will apply equation (3.10)

to obtain the unique QSD given by

νλ(y) =
eλ − 1

Ey[exp(λτ∆), τ∆ < τy]
,

with absorption parameter λ, for each λ ∈ (0, λcr]. To obtain an explicit formula,
a similar calculation shows that for all y ∈ Z+

E0[exp(λτ∆), τ∆ < τy] = eλq + eλ
∑

0≤j<y

(1− q)µ(j)eλjE0[exp(λτ∆), τ∆ < τy],

and therefore

E0[exp(λτ∆), τ∆ < τy] =
eλq

1− eλ
∑y−1

j=0 (1− q)µ(j)eλj
.

In addition,

Ey[exp(λτ∆), τ∆ < τy] = eλyE0[exp(λτ∆), τ∆ < τy]

= eλy(eλq + eλ
y−1∑
j=0

(1− q)µ(j)eλjE0[exp(λτ∆), τ∆ < τy])
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So

Ey[exp(λτ∆, τ∆ < τy] =
eλ(y+1)q

1− eλ
∑y−1

j=0 (1− q)µ(j)eλj
.

Thus,

νλ(y) =
1

q
e−λ(y+1)(eλ − 1)(1− (1− q)

∑
0≤j<y

µ(j)eλ(j+1)). (6.4)

In summary, λcr is given by (6.3), is in the infinite MGF regime and for each
λ ∈ (0, λcr] there exists a unique QSD given by (6.4). Note that the existence
of all these QSDs is an immediate application of Corollary 2.1.

6.3 Absorption Probability Bounded from Below

Consider any process Y on S ∪ {∆} with transition function pY satisfying
Assumption HD-1, HD-2 and HD-3. We will also assume that for any
λ ∈ (0, λY

cr), limx→∞Ex[exp(λτ
Y
∆ )] = ∞. Note that we have used the su-

perscript Y to denote quantities associated with Y , as we now introduce the
process X.

Let J be a geometric random variable, independent of Y with probability of
success 1− e−ρ for some ρ > 0. Define X as follows:

Xn =

{
Yn n < J

∆ otherwise

This is equivalent to defining p(x, y) = e−ρpY (x, y) for x, y ∈ S, and p(x,∆) =
1−

∑
y∈S p(x, y). Clearly,

Px(τ∆ > n) = P (τY∆ ∧ J > n) = Px(τ∆ > n)P (J > n) = Px(τ∆ > n)e−nρ.

Now since for every random variable T which is nonnegative and taking integer
values we have

E[exp(λT )] = 1 + (eλ − 1)

∞∑
n=0

eλnP (T > n),

it follows that

Ex[exp(λτ∆)] = 1 + (eλ − 1)

∞∑
n=0

e(λ−ρ)nPx(τ
Y
∆ > n)

= 1 +
eλ − 1

eλ−ρ − 1
(Ex[exp((λ− ρ)τY∆ )]− 1).

Therefore this expression is bounded as a function of x if λ < ρ, and is equal to
1+(eλ−1)Ex[τ

Y
∆ ] when λ = ρ, and tends to infinity as x → ∞ when λ > ρ. Also,

λcr = λY
cr + ρ. It follows from Corollary 2.1 that X has QSDs with absorption

parameter λ for every λ ∈ (ρ, ρ + λY
cr], and that it does not possess any QSDs

with absorption parameter λ ∈ (0, ρ).
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6.4 Subcritical Branching Process

Let X be a branching process with a nondegenerate offspring distribution B
on Z+ (we will abuse notation and will refer to B as a random variable). As
usual [2, p. 3] and to avoid trivialities we will assume P (B = j) < 1 for all
j ∈ N and P (B ≤ 1) < 1. The unique absorbing state is 0. We will also assume
that the process is subcritical, namely E[B] ∈ (0, 1), and let m = E[B]. A
straightforward calculation shows that for any x ∈ N, Ex[e

λτ∆ ] < ∞ if eλ < 1
m

and Ex[e
λτ∆ ] = ∞ if eλ > 1

m . Therefore eλcr = 1
m , equivalently λcr = ln 1

m .
Though the restriction of X to the non-absorbing set N is not irreducible, we
can restrict the process to an infinite subset of N depending on the support of
B, resulting in an irreducible process.

Our results provide a quick way to prove the existence of a continuum of
QSDs. Indeed, for any λ ∈ (0, λcr), Jensen’s inequality gives Ex[exp(λτ∆)] ≥
eλEx[τ∆]. As Ex[τ∆] is the expectation of the maximum of x independent copies
of τ∆ under the distribution P1, it immediately follows that limx→∞Ex[τ∆] =
∞, and therefore Corollary 2.1 holds with λ0 = 0. Namely, for every λ ∈
(0, λcr = ln 1

m ] there exists a QSD with absorption parameter λ.
Existence and convergence results for a minimal QSD for the subcritical

branching process are among the earliest in the field of QSDs. Let f be the
generating function of B. Yaglom’s theorem [2, Corollary 1, p. 18] states that
for x ∈ N, Px(Xn ∈ · | τ∆ > n) converges as n → ∞ to a probability distribution
on N which is the unique solution to the functional equation

B(f(s)) = mB(s) + (1−m) (6.5)

among all probability distributions on N. Being obtained as a quasi-limiting
distribution, this limit is also a QSD. A straightforward calculation of the gen-
erating function for a solution to (1.6) with e−λ = m reveals that it must satisfy
(6.5), and so a minimal QSD exists and is unique. Denote this QSD by νcr.

As is well known, [2, Corollary 2, p. 45], the additional assumption E[B ln(1+
B)] < ∞ is equivalent to νcr having finite expectation, namely

∑∞
i=1 νcr(i)i <

∞. As the identity function h(i) = i on N satisfies ph = mh, a straightfor-
ward application of the definition of the reverse chain associated with νcr, (3.5),
reveals that under this additional condition, νcrh can be normalized to be a
stationary distribution for q. Hence, q is positive recurrent and proves the exis-
tence of a minimal QSD. Proposition 3.3 and the comment below it guarantee
that λcr is in the infinite regime and that (2.1) and (2.3) hold. Moreover, if
we take S as the irreducible non-absorbing class mentioned above, then since
the P (B = 0) > 0, it follows that for every state x ∈ N in the support of B,
p(x, x) > 0, which along the irreducibility on S, implies that X is aperiodic.
Thus, both the representation and the convergence results in Theorem 2.1 hold,
and in particular, (2.2) provides us with a new MCMC method for sampling
from the minimal QSD under this additional condition. We refer the reader to
[13], which discusses numerical methods for solving (6.5).
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6.5 Rooted Tree

Consider an infinite rooted tree, with the root ρr being the only state from which
absorption is possible. We will assume p is the nearest neighbor Markov Chain
on this tree with a unique absorption state ∆ satisfying Assumption HD-1,
HD-2, HD-3 and condition 2.11. For example, we can assume the degree of
each vertex is bounded, and the transition from any vertex on the tree to any
neighboring vertex on the tree is strictly positive, and for vertices other than the
root, the transition to the unique vertex closer to the root is uniformly bounded
below by 1

2 + ϵ for some ϵ > 0.
Suppose λ is in the finite regime (which may include λcr), and take a sequence

of vertices (xn : n ∈ N) going to infinity along some unique branch. Recall
Cλ(x, y) from Definition 2.3. Two alternatives are illustrated by the following
specific graph:

ρr

y1

xn

y2
y0

y′2

Figure 2: Regular tree of degree 3 with a unique absorption state ∆

1. For y in that branch, we clearly have limn→∞ Cλ(xn, y) = 1. For instance,
y1 is on the branch in Figure 2.

2. For other y, we need to consider two cases.

(a) y is not on the branch, yet it has ancestors on the branch other than
ρr. One example is the vertex y2 in Figure 2. In this case, let y0
denote the most recent ancestor of y2 on the branch. For a path to
get to y2, it must pass through y0. With this,

Cλ(xn, y) =
Exn

[exp(λτy0
), τy0

< τ∆]Ey0
[exp(λτy), τy < τ∆]Ey[exp(λτ∆)]

Exn [exp(λτ∆)]− 1

→
n→∞

Ey0 [exp(λτy), τy < τ∆]Ey[exp(λτ∆)]

Ey0
[exp(λτ∆)]

< 1
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(b) y has no ancestor on the branch other than ρr, and so to get to y
from xn with n large enough, we need to pass through the root where
absorption is possible. For instance, in Figure 2 y′2 has no ancestor
on the branch, and in order to go from xn to y′2, we need to pass
through ρr. Thus,

Cλ(xn, y) =
Exn

[exp(λτρr
)]Eρr

[exp(λτ∆), τy < τ∆]

Exn
[exp(λτρr

)]Eρr
[exp(λτ∆)]− 1

→
n→∞

Eρr
[exp(λτ∆), τy < τ∆]

Eρr
[exp(λτ∆)]

< 1.

Therefore, by Proposition 2.3, for each branch, we have a QSD correspond-
ing to that branch.

Next, recall Kλ(xn, ·) from Definition 2.1, we will also show that in this finite
MGF regime, for every y, limn→∞Kλ(xn, y) exists and is a QSD.

Let ȳ be the unique element on the same branch as (xn : n ∈ N) satisfying
|ȳ| = |y|, i.e., the lengths of the shortest paths from ρr are equal. Since we
are interested in the limit as n → ∞, without loss of generality, we can assume
|xn| > |y| for all n. To reach y from xn, the process must first hit ȳ. Therefore,

Gλ(xn, y) = Exn
[exp(λτȳ)]×

Eȳ[exp(λ
0τy),

0 τy < τ∆]

1− Ey[exp(λτy), τy < τ∆]
.

Also,
Gλ(xn,1) = Exn [exp(λτȳ)]G

λ(ȳ,1).

This gives

Kλ(xn, y) =
Gλ(xn, y)

Gλ(xn,1)
=

Eȳ[exp(λ
0τy),

0 τy < τ∆]

Gλ(ȳ,1)
× 1

1− Ey[exp(λτy), τy < τ∆]
.

(6.6)
As the limit trivially exists, by Corollary 2.3, it is a QSD. Therefore, there exist
QSDs with absorption parameter λ, and all such QSDs can be obtained through
Theorem 2.3, where the elements of Sλ can be indexed by the branches, and
are each given by the righthand side of (6.6), where y is any vertex and ȳ is the
unique vertex on the branch satisfying |ȳ| = |y|.

7 Results: Continuous-Time

7.1 Definitions and Assumptions

We adapt the main results of Section 2 to the continuous-time setting. This
adaptation is mostly straightforward and routine, and we present it primarily
in order to make a connection with the large body of literature in the continuous-
time setting.

33



We begin by introducing the set of hypotheses. Let XXX = (Xt : t ∈ R+)
be a Markov Chain on a state space which is a disjoint union S ∪ {∆}, where
S is either finite or countably infinite. We will denote the distribution and
expectation of XXX under the initial distribution µ by Pµ and Eµ respectively, with
Px and Ex serving as shorthand for Pδx and Eδx , respectively. For x ∈ S∪{∆},
let

τx = inf{t > 0 : Xt = x,Xt− ̸= x}. (7.1)

We will work under the following hypotheses, which are the analogs of the
assumptions made for the discrete-time setting:

HC-1. τ∆ < ∞, Px − a.s. for some x ∈ S.

HC-2. The set S is an irreducible class, and the exponential holding time at
each x ∈ S has parameter qx ∈ (0,∞).

HC-3. There exists β > 0 such that Ex[exp(βτ∆)] < ∞ for some (equivalently
all) x ∈ S.

Clearly, ∆ is the unique absorbing state, and therefore, we will refer to τ∆
as the absorption time. Note that HC-3 guarantees that XXX is non-explosive.
This is mostly for the simplicity of the presentation, as the explosion can be
handled by the discretization scheme we use to derive the results below. We
briefly review the notion of a QSD in a continuous time setting and some basic
properties. Recall that a probability distribution ν on S is a QSD if the following
analog of (1.3) holds.

Pν(Xt ∈ · | τ∆ > t) = ν(·), t ∈ R+, (7.2)

If ν is a QSD, then under Pν , τ∆ is exponentially distributed with parameter
λ > 0. That is, the following analog of (1.5) holds:

Pν(τ∆ > t) = e−λt, t ∈ R+, (7.3)

and we say that ν is a QSD with absorption parameter λ.
We write (Pt : t ∈ R+) for the semigroup of contractions on ℓ1(S) given by

(νPt)(y) =
∑
x∈S

ν(x)Px(XXXt = y), ν ∈ ℓ1(S).

Assumption HC− 2 implies that the semigroup is weakly continuous from
the right at 0. Namely, for any ν ∈ ℓ1(S) and f ∈ ℓ∞(S), limt↓0(νPt)f =
limt↓0

∑
x∈S ν(x)Ex[f(XXXt)] =

∑
x∈S µ(x)f(x), and therefore, [21, p. 255, Theo-

rem], [14, Chapter X, Corollary of Theorem 10.2.3], the semigroups is strongly
continuous, that is for any ν ∈ ℓ1(S), limt↓0 νPt = ν in ℓ1(S). As a result, the
semigroup has a densely defined generator L:

νL = lim
t↓0

νPt − ν

t
, (7.4)

where the limit is in ℓ1(S). In particular, we have the following
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Proposition 7.1. A probability measure ν on S is a QSD for XXX with absorption
parameter λ > 0 if and only if ν is in the domain of L and

νL = −λν. (7.5)

Though the proof is straightforward, we bring it here for completeness.
Clearly, (7.5) can be interpreted as a sequence of linear equations ([26, p. 691-
692] provides an example of a birth and death process and a probability measure
satisfying the sequence of equations but which is not a QSD. In the present con-
text, the latter statement means that the probability measure is not in the
domain of L).

Proof. Assume first that ν is a QSD. Then (7.2) can be rewritten as

νPt =
∑
y

(νPt)(y)ν.

Thus, on the one hand, νPt+s =
∑

y(νPt+s)(y)ν, while on the other hand, using
the semigroup property,

νPt+s = νPtPs

=
∑
y

(νPt)(y)νPs

=
∑
y

(νPt)(y)
∑
y

(νPs)(y)ν.

As ν is strictly positive, it follows that the function t →
∑

y(νPt)(y) is multi-
plicative. It is equal to 1 at zero and nonincreasing and tends to 0 as t → ∞.
It is therefore of the form e−λt for some λ > 0. As a result, νPt = e−λtν.
This implies that ν is in the domain of L and that (7.5) holds. Conversely, if
ν is in the domain of L and satisfies (7.5), then [21, Section 2, Theorem 1.3]

gives that for any f ∈ ℓ∞(S), νPtf = νf +
∫ t

0
νLPsfds, that is the continuous

function ϕf (t) = νPtf on R+ satisfies ϕf (t) = ϕf (0) − λ
∫ t

0
ϕf (s)ds, and so

ϕf (t) = e−λtϕf (0). Equivalently, νPt = e−λtν, which implies (7.2).

Next we define the critical absorption parameter λcr analogously to (1.7):

λcr = sup{λ > 0 : Ex[exp(λτ∆)] < ∞ for some x ∈ S}. (7.6)

Note that HC-3 implies that the exponential parameter of the holding time at
each state x, qx, is strictly larger than β, and as a result, infx∈S qx ≥ β, so
λcr ∈ (0, infx∈S qx]. As before, we say that λ > 0 is in the finite MGF regime
if Ex[exp(λτ∆)] < ∞ for some (equivalently all) x ∈ S, and that λcr is in the
infinite MGF regime if for some (equivalently all) x ∈ S, Ex[exp(λcrτ∆)] = ∞.
A QSD with absorption parameter λcr is called the minimal QSD.

We record the following analog of Proposition 1.2, which we will need in
the sequel. As the proof is identical to the proof in the discrete case, it will be
omitted.
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Proposition 7.2. Let λ ∈ (0, λcr]. Then for every x ∈ S, Ex[exp(λτx), τx <
τ∆] ≤ 1. Moreover,

1. If Ex[exp(λτ∆)] < ∞ then the inequality is strict;

2. If Ex[exp(λcrτ∆)] = ∞ and Ex[exp(λcrτ∆), τ∆ < τx] < ∞ for some x ∈ S,
then Ex[exp(λcrτx), τx < τ∆] = 1 for all x ∈ S.

7.2 Discretizing Time

All results we present below use the embedded discrete-time processes we present
in this section. For d > 0, define a discrete-time Markov chain on S ∪ {∆},
Xd = (Xd

n : n ∈ Z+) by letting

Xd
n = Xdn. (7.7)

For x ∈ S ∪ {∆}, let
τdx = inf{n ∈ N : Xd

n = x}.
Clearly, Xd is a Markov chain satisfying HD-1, HD-2 and HD-3. Moreover,
if τd∆ = n, then on the one hand necessarily, Xnd = ∆, and so τ∆ ≤ dn, and on
the other hand, Xd

n−1 ∈ S or, equivalently, X(n−1)d ∈ S, so τ∆ > d(n− 1). We
therefore have that for every x ∈ S and d > 0,

τ∆ ≤ dτd∆ < τ∆ + d. (7.8)

From this, it follows that

Ex[exp(λτ∆)] ≤ Ex[exp(λdτ
d
∆)] ≤ eλdEx[exp(λτ∆)]. (7.9)

and in particular letting λd
cr denote the critical absorption parameter for Xd,

then
λd
cr = dλcr. (7.10)

The following allows connecting hitting times of states other than ∆ for the
continuous and the discrete processes.

Proposition 7.3. Let x0 ∈ S and suppose that Ex0
[exp(λτ∆∧τx0

)] < ∞. Then
there exists d0 > 0 such that for d ∈ (0, d0), Ex0 [exp(λd(τ

d
∆ ∧ τdx0

))] < ∞.

Proof. We begin by recalling that if XXX starts from x0, then the state where it
jumps to first and the time it takes to perform the jump are independent. This
can be done through the construction of the Markov chain. For simplicity, label
the states other than x0 by 1, 2, . . . . Let T1, T2, . . . be independent exponential
random variables with respective parameters ρ1, ρ2, . . . . We assume q = qx0

=∑
j ρj < ∞. Let T = inf Tj . Clearly, T is exponential with parameter q. Also,

let R be the smallest (and unique, almost surely) index j satisfying T = Tj .
Then, the chain will jump to state R at time T . The joint distribution of R and
T is given by

P (R = j, T > t) = P (Tj > t,∩i ̸=j{Ti ≥ Tj}) = ρj

∫ ∞
t

e−ρjse−
∑

i̸=j ρisds =
ρj
q
e−qt.
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Therefore, R and T are independent. In particular, P (R = j|T ≤ d) = P (R =
j) =

ρj

q .

We turn to the main claim. Let τ1x0
= τx0

and continue inductively, defining
a sequence (τkx0

: k = 1, 2, . . . ) by letting

τk+1
x0

= inf{t > τkx0
: Xt− ̸= x0, Xt = x0}.

Let J = inf{k ≥ 1 : τkx0
< ∞,Xτk

x0
+s = x0, for all s ∈ [0, d]}. In both definitions

above, we adopt the convention inf ∅ = ∞. Note that J is the first visit to x0

after which the XXX stays put for at least d units, and recall that the distribution
of a Markov Chain right after a jump from a given state is independent of the
time it took to jump from the state. On the event J < ∞, τJx0

is finite, and on
J = ∞, we define τJx0

= ∞. We need a few more definitions. First, for M > 0,
let vM (x0) = Ex0

[exp(λ(τJx0
∧ τ∆ ∧M))].

Let S = Ex0
[exp(λ(τx0

∧τ∆)), τ∆ < τx0
]+Ex0

[exp(λτx0
∧τ∆)), τx0

< τ∆, J =
1]. This expression is bounded above by Ex0

[exp(λ(τx0
∧ τ∆))] and is therefore

finite by assumption. We have the upper bound

vM (x0) ≤ S + Ex0
[exp(λ(τJx0

∧ τ∆)), τx0
< τ∆, J > 1]. (7.11)

We examine the second summand on the righthand side. Letting

ηd = Ex0
[exp(λ(τx0

∧ τ∆)), τx0
< τ∆](1− e−qx0

d)eλd,

then the second summand on the righthand side of (7.11) is bounded above by
ηdvM (x0). In addition, there exists d0 such that for d < d0, ηd < 1. From these
bounds we conclude that vM (x0) ≤ S + ηdvM (x0), and since vM (x0) is finite
by construction, vM (x0) ≤ S

1−ηd
. The righthand side is independent of M . By

letting M → ∞, it follows from monotone convergence that

Ex0 [exp(λ(τ
J
x0

∧ τ∆))] ≤
S

1− ηd
< ∞.

As it is always true that dτd∆ ≤ τ∆ + d, on the event J = ∞, we clearly have
d(τdx0

∧ τd∆) ≤ τJx0
∧ τ∆ + d. On the event J < ∞, the definition of τJx0

gives
dτdx0

≤ τJx0
+ d, so d(τdx0

∧ τd∆) ≤ τJx0
∧ τ∆+ d too. This completes the proof.

Finally, we provide a connection between the QSDs for XXX and those for Xd.

Proposition 7.4. Let d > 0. The process XXX has a QSD with absorption param-
eter λ if and only if Xd has a QSD with absorption parameter dλ. Specifically,

1. Let ν be a QSD for XXX with absorption parameter λ. Then ν is a QSD for
Xd with absorption parameter dλ.

2. Conversely, let ν be a QSD for Xd with absorption parameter dλ. Then∫ d

0
eλsPν(Xs ∈ · )ds can be normalized to be a QSD for XXX with absorption

parameter λ.
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Proof. The first numbered assertion is trivial. As for the second, suppose that
ν is a QSD for Xd with absorption parameter λd. For s ∈ R+ and x ∈ S, let
h(s, x) = eλsPν(Xs = x). Then

h(s+ d, x) = eλseλdPν(Xs+d = x)

= eλseλdEνPXd
1
(Xs = x)

= eλsPν(Xs = x) = h(s, x).

Note here that we pass from the second line to the third using the fact that ν
is a QSD for Xd, and so for any bounded f on S ∪{∆} vanishing on ∆ we have
eλdEν [f(X

d
1 )] = Eν [f(X

d
0 )]. Here we used f(u) = Pu(Xs = x). We proved that

h is d-periodic in the first variable. Define ν̃(x) =
∫ d

0
h(s, x)ds. Then ν̃ is a

finite measure on S. Also, for t ∈ R+ and y ∈ S

∑
x

ν̃(x)Px(Xt = y) =
∑
x

∫ d

0

eλsPν(Xs = x)Px(Xt = y)ds

= e−λt
∫ d

0

h(s+ t, y)ds

u=s+t
= e−λt

∫ t+d

t

h(u, y)du

= e−λtν̃(y).

Thus, by normalizing ν̃, we obtain a QSD with absorption parameter λ.

7.3 Infinite MGF Regime

We begin with the analog of Theorem 2.1

Theorem 7.1. Suppose λcr is in the infinite MGF regime. Then

1. There exists a minimal QSD if and only if there exists x ∈ S such that

Ex[exp(λcrτ∆ ∧ τx)] < ∞. (7.12)

In this case, there exists a unique minimal QSD νcr, which is given by the
formula

νcr(x) =
λcr

qx − λcr

1

Ex[exp(λcrτ∆ ∧ τx)]− 1

=
λcr

qx − λcr

1

Ex[exp(λcrτ∆), τ∆ < τx]
.

(7.13)

2. If, in addition to (7.12),

Ex[exp(λcrτx)τx, τx < τ∆] < ∞ for some x ∈ S, (7.14)
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then for any finitely supported µ on S,

lim
t→∞

Pµ(Xt ∈ · | τ∆ > t) → ν, (7.15)

with ν = νcr.

Proof of Theorem 7.1. We prove the assertions in this order: the sufficiency of
(7.12) followed by its necessity, then the uniqueness of a minimal QSD, the
representation, and finally, the convergence.

Sufficiency. Suppose first that (7.12) holds. Apply Proposition 7.3 with
x0 = x, and let d = d0/2, where d0 is the positive constant obtained in the
proposition. Then Xd satisfies the conditions of Theorem 2.1, and as a result
possesses a unique minimal QSD, νcr, given by (2.2). Denote the minimal QSD
for XXX obtained from νcr through the application of Proposition 7.4-2 by νcr.

Necessity. Suppose that ν is a minimal QSD for XXX. Let d > 0. Then from

Proposition 7.4-1, ν is a minimal QSD for Xd and therefore (2.1) holds for Xd.
Thus, Ex[exp(λcrd(τdx ∧ τd∆))] < ∞. But since τx ∧ τ∆ ≤ d(τdx ∧ τd∆), it follows
that (7.12) holds.

Uniqueness. Suppose that ν and ν′ are minimal QSDs for XXX. Then by

Proposition 7.4-1, both are also minimal for Xd, and by the uniqueness of a
minimal QSD for Xd, it follows that ν = ν′. We will, therefore, denote the
unique minimal QSD for XXX by νcr.

Representation. As argued above, when it exists, νcr is the unique minimal

QSD for each of the processes X1/m for all integer m large enough. We will

denote all quantities associated with X1/m with the superscript 1
m . Write µ

1/m
x

for the measure defined in Proposition 3.1 relative to the process X1/m with

α = eλcr/m = eλ
1/m
cr . Since µ

1/m
x p1/m = e−λ

1/m
cr µ

1/m
x , it follows from Proposition

1.1 and the uniqueness of the minimal QSD νcr that

νcr(·) =
µ
1/m
x (·)

µ
1/m
x (1)

. (7.16)

We will utilize this and a Riemann sum approximation to obtain the represen-
tation (7.13). Define

Ix(f) = Ex[

∫ τ∆∧τx

0

exp(λcrs)f(Xs)ds].

Then, a Riemann sum approximation and the dominated convergence theorem
give

Ix(f) = lim
m→∞

Ex[
1

m

∑
0≤n/m≤τ∆∧τx

eλcrn/mf(Xn/m)]. (7.17)

Because X1/m is a snapshot of XXX at discrete intervals, τ
1/m
x ≥ mτx. Also, letting

Am = {τ1/mx < mτx + 1}, we see that

Px(Am) ≥ e−qx/m →
m→∞

1.
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On the event Am, we can write the Riemann sum on the righthand of (7.17) as

1

m

 ∑
0≤n<τ

1/m
x ∧τ1/m

∆

eλ
1/m
cr nf(X1/m

n ) + Ceλcrτ∆∧τx

 ,

where |C| is bounded by ∥f∥∞. Taking expectations, this is equal to 1
mµ

1/m
x (f)+

O(1/m), and using (7.16), this is also equal to 1
mµ

1/m
x (1)νcr(f) +O( 1

m ). Since
the expectation of the integral on the complement of Am tends to zero as m →
∞, we conclude that

Ix(f) = lim
m→∞

1

m
µ1/m
x (1)νcr(f).

Use this with f ≡ 1, we have Ix(1) = limm→∞
1
mµ

1/m
x (1), and so

νcr(f) =
Ix(f)

Ix(1)
.

The first expression for the QSD follows from a direct calculation of the denom-
inator, and the second follows from Proposition 7.2-2.

Next, we consider an analog of Theorem 2.2. For continuous-time processes,
Ferrari, Kesten, Martinez, and Picco showed the convergence based on a renewal
technique [10]. Martinez, San Martin, and Villemonais presented that the condi-
tional distribution of the process converges exponentially fast in total variation
norm to a unique QSD [19]. Convergence in total variation for processes satisfy-
ing strong mixing conditions was obtained using Fleming-Viot particle systems
[7]. More recently, Champagnat and Villemonais stated a general criterion for
uniform exponential convergence in total variation for absorbed Markov pro-
cesses conditioned to survive [5, Assumption A]. They also provide analogous
conditions involving Lyapunov functions, tailored to the situation where the
convergence is non-uniform [6]. Our work considers the time-reversal at the
quasi-stationarity of the absorbed Markov process, similar to the approach by
Tough [25]. In particular, both Theorem 2.2 and Theorem 7.2 were inspired by
and should be viewed as weaker versions of the main result in [19], but with
a focus on the representation of the QSD rather than convergence to it. We
provide more details on the difference in the statement of the theorem below.

Theorem 7.2. Suppose that there exists some λ̄ > 0 and a nonempty finite
K ⊊ S

Ex[exp(λ̄τ∆)] = ∞ and (7.18)

sup
x ̸∈K

Ex[exp(λ̄τ∆ ∧ τK)] < ∞. (7.19)

Then
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1. The conditions of Theorem 7.1 hold. In particular, there exists a unique
minimal QSD νcr given by (7.13).

2. There are no other QSDs.

3. (7.15) holds for every finitely supported µ on S.

If, in addition, there exists some x0 ∈ S such that

inf
x∈S

Px(τx0 < τ∆)

Px(τ∆ > 1)
> 0 (7.20)

then (7.15) holds for any initial distribution µ.

The main result of [19] gives the existence, uniqueness, and exponential
convergence with an explicit bound on the total variation norm. The authors of
that paperwork work under the following set of assumptions. First, they assume
that S is countably infinite, ∆ is a unique absorbing state, Px(τ∆ < ∞) = 1 for
all x ∈ S, as well as the following:

H1. There exists a finite non-empty K ⊊ S and a constant c1 > 0 such that
for all t > 0,

inf
x∈K

Px(τ∆ > t) ≤ c1 sup
x∈K

Px(τ∆ > t).

H2. There exists a finite K ⊊ S and x0 ∈ K and constants λ0, c2, c3 > 0 such
that supx∈S Ex[exp(λ0(τK ∧ τ∆))] ≤ c2 and Px0

(Xt ∈ K) ≥ c3 exp(−λ0t)
for all t > 0.

H3. There exists x0 ∈ K and a constant c4 > 0 such that infx∈S Px(X1 =
x0 | τ∆ > 1) ≥ c4.

In part, H1 and H3 allow us to extend the discussion to processes not satisfying
our irreducibility condition HC-2. We will now show that when S is irreducible,
assumptions H2 and H3 imply all conditions of Theorem 7.2. Indeed, H2 im-
plies (7.18) and (7.19). Since Px(τx0 < τ∆) ≥ Px(X1 = x0), condition H3 im-
plies (7.20). The existence and uniqueness in [19] were established by obtaining
uniform exponential bounds expressed in terms of the constants in H1,H2 and
H3, yet no formula for the QSD was obtained and relies on mathematical appa-
ratus specifically developed to prove convergence. The focus of this work is on
existence and representation, and our convergence result is obtained through an
application of the ergodic positive recurrent and aperiodic discrete-time Markov
chains, which is applicable to the reverse chain from Section 3.2.

Proof of Theorem 7.2. Let m ∈ N and let d = 1/m. The transition function
pd is automatically irreducible. Moreover, (7.18) and (7.19), yield the analo-
gous statements for Xd. Therefore Xd satisfies the first set of assumptions of
Theorem 2.2. This leads to the first two numbered conclusions and the claimed
convergence along the subsequence tn = nd, n ∈ Z+. As (7.20) implies the
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analogous condition (2.8) for Xd, the final conclusion also holds along this sub-
sequence. Note that this is valid for all positive d and that the unique QSD is
independent of the choice of d.

It remains to prove the convergences along all sequences. Recall that d =
1/m, m ∈ N. For every t, let [t]m = ⌊tm⌋, the corresponding “time” for the
process X1/m. Observe that for every t > 0

Pµ(X
1/m
[t]m

= y)e−qy/m ≤ Pµ(Xt = y).

Or,

Pµ(Xt = y) ≥ e−qy/mPµ(X
1/m
[t]m

= y) ∼
t→∞

ν(y)Pµ(τ
1/m
∆ > [t]m).

If τ∆ > 1
m [t]m, because τ

1/m
∆ ≥ mτ∆ and [t]m ≤ tm, it follows that {τ1/m∆ >

[t]m} ⊇ {mτ∆ > tm}. As a result,

lim inf
t→∞

Pµ(Xt = y|τ∆ > t) ≥ ν(y)e−qy/m.

Let νt = Pµ(Xt ∈ · |τ∆ > t). Since m is arbitrary, lim inft→∞ νt(y) ≥ ν(y).
Fatuo’s lemma gives that for anyA ⊂ S, lim inft→∞ νt(A) = lim inft→∞

∑
x∈A νt(x) ≥

ν(A). Apply this to Ac to obtain

ν(Ac) ≤ lim inf
t→∞

∑
x∈Ac

νt(x) = 1− lim sup
t→∞

∑
x∈A

νt(x).

Thus also lim supt→∞ νt(A) ≤ ν(A), completing the proof.

7.4 Finite MGF Regime

We begin with the analog of Theorem 2.4

Theorem 7.3. Let λ > 0 be in the finite MGF regime. Then

1. If for some λ′ ∈ (0, λ), limx→∞Ex[exp(λ′τ∆)] = ∞ then there exists a
QSD for XXX with absorption parameter λ′.

2. If supx Ex[exp(λτ∆)] < ∞, then there does not exist a QSD for XXX with
absorption parameter λ.

Proof. Fix some d > 0. We prove the two assertions in order of appearance:

1. Let 0 < λ′ < λ satisfies limx→∞Ex[exp(λ
′τ∆)] = ∞. The first inequality

in (7.9) gives limx→∞Ex[exp(λ
′dτd∆)] = ∞ for the discrete process Xd. By

Theorem 2.4-1, we conclude thatXd has a QSD with absorption parameter
λd, hence Proposition 7.4 implies XXX has a QSD with absorption parameter
λ.

2. Given supx Ex[exp(λτ∆)] < ∞, the second inequality in (7.9) gives supx Ex[exp(λdτ
d
∆)] <

∞ for the discrete process Xd. From Theorem 2.4-2, we conclude that Xd

does not have a QSD with absorption parameter λd. Thus, from Proposi-
tion 7.4, we obtain that XXX has no QSD with absorption parameter λ.
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We also have the following analog of Corollary 2.1

Corollary 7.1. Let

λ0 = inf{λ ∈ (0, λcr) : lim
x→∞

Ex[exp(λτ∆)] = ∞},

with the convention inf ∅ = ∞. Then for every λ ∈ (λ0, λcr] there exists a QSD
with absorption parameter λ.

A special case is the main result of [10]. There, the authors proved the
existence of a QSD under the assumption that for all t > 0,

lim
x→∞

Px(τ∆ ≤ t) → 0.

This assumption implies limx→∞Ex[exp(λ
′τ∆)] = ∞ for every λ′ > 0, and

therefore the corollary yields the existence of a QSD for every absorption pa-
rameter in the interval (0, λcr].

Proof. For some λ′ > 0, limx→∞Ex[exp(λ
′dτd∆)] = ∞ and Corollary 2.1 guar-

antees that Xd has a QSD with absorption parameter in (λ′d, λcrd]. The result
follows from Proposition 7.4.

7.5 Martin Boundary

In this section, we provide a continuous-time version of Theorem 2.3. As in the
previous sections, we adapt the results from the discrete setting.

Assume that λ > 0 is in the finite MGF regime. Fix any d > 0. Then the
process Xd induces a Martin compactification, Definition 2.2. As in the defini-
tion, we write Kdλ, ∂dλM and (Mdλ, ρdλ) for the corresponding Martin kernels,
boundary and metric space. We also write Sdλ for the elements in ∂dλM , which
are QSDs for the transition function for Xd with absorption parameter dλ.

We need some preparations. First, we introduce the analogs of the kernels
Kdλ(·, ·). For x ∈ S, define the kernel

Kλ(x, y) =

∫∞
0

eλsPx(XXXs = y)ds∫∞
0

eλsPx(τ∆ > s)ds
. (7.21)

Note that by our assumption that λ is in the finite MGF regime, both integrals
are finite and nonzero. We make a connection with the kernels Kdλ(·, ·).

Lemma 7.1.

Kλ(x, y) =

∫ d

0
eλsPKdλ(x,·)(XXXs = y)ds∫ d

0
eλsPKdλ(x,·)(τ∆ > s)ds

.

43



Proof. The numerator in (7.21) can be rewritten as

∞∑
m=0

edλm
∫ d

0

eλsPx(XXXdm+s = y)ds =

∞∑
m=0

edλm
∫ d

0

eλsEx[PXd
m
(XXXs = y)]ds

=

∞∑
m=0

∑
z

edλmPx(X
d
m = z)

∫ d

0

eλsPz(XXXs = y)ds

=
∑
z

Gdλ(x, z)

∫ d

0

eλsPz(XXXs = y)ds

= Gdλ(x,1)

∫ d

0

eλsPKdλ(x,·)(XXXs = y)ds

and similarly, the denominator is equal to Gdλ(x,1)
∫ d

0
eλsPKdλ(x,·)(τ∆ > s)ds.

Proposition 7.5. Let [x] ∈ Sdλ. Then

1. For every sequence (xn : n ∈ N) of elments in S which is in [x],

lim
n→∞

Kλ(xn, y) =

∫ d

0
eλsPKdλ([x],·)(XXXs = y)ds∫ d

0
eλsPKdλ([x],·)(τ∆ > s)ds

, y ∈ S.

Denote this limit by Kλ([x], ·).

2. y → Kλ([x], ·) is a QSD for XXX with absorption parameter λ.

Proof. The first statement follows from applying the dominated convergence
theorem to the identity in Lemma 7.1. Since Kdλ([x], ·) is a QSD for Xd with
absorption parameter dλ, the second statement follows from Proposition 7.4-2
and the fact that Kλ([x], ·) is a probability measure on S.

We are ready to state the analog of Theorem 2.3.

Theorem 7.4. Let λ > 0 be in the finite MGF regime for XXX. Let ν be a QSD
for XXX with absorption parameter λ. Then, there exists a probability measure F̂ν

on ∂dλM satisfying F̂ν(S
dλ) = 1 such that

ν(y) =

∫
Kλ([x], y)dF̂ν([x]).

Proof. By Proposition 7.4-1, ν is a QSD for Xd with absorption parameter dλ.
Theorem 2.3 then gives a probability measure F̄ν with F̄ν(S

dλ) = 1, satisfying

ν(y) =

∫
Kdλ([x], y)dF̄ν([x]).
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Since ν is a QSD for XXX with absorption paramter λ, for every s > 0, eλsPν(XXXs =

y) = ν(y) and so ν(y) =
∫ d

0
eλsPν(XXXs = y)ds. An application of Fubini-Tonelli

then gives

ν(y) =

∫ (
1

d

∫ d

0

eλsPKdλ([x],·)(XXXs = y)ds

)
dF̄ν([x])

=

∫
Kλ([x], y)

∫ d

0
eλsPKdλ([x],·)(τ∆ > s)ds

d
F̄ν([x])

=

∫
Kλ([x], y)dF̂ν([x]),

where F̂ν is a measure absoultely continous with respect to F̄ν , given by dF̂ν

dF̄ν
([x]) =∫ d

0
eλsP

Kdλ([x],·)(τ∆>s)ds

d . As ν and each Kλ([x], ·) are probability measures, it fol-

lows that F̂ν is a probability measure too.

7.6 Example: QSDs for Birth and Death Process

In [26], Van-Doorn obtained all QSDs for birth and death processes on Z+, which
are eventually absorbed at −1. This was done through a very detailed analysis
of a spectral representation for the transition kernel of the process. Our work
allows us to recover some of the main results using the general theory developed
in earlier sections. We stress that the work in [26] contains many additional
results, which we will not cover here, specifically regarding convergence.

In this section, we will drop HC-1,2,3 to allow a more complete discussion
consistent with the literature. We assume that XXX is a birth and death process
on Z+ ∪ {−1}, with birth and death rates (λk : k ∈ Z+) and (µk : k ∈ Z+)
respectively, which are all in (0,∞), and with −1 as a unique absorbing state.
Letting

π0 = 1, πn =

n∏
j=1

λj−1

µj
, n ∈ N,

then
∞∑

n=0

1

λnπn
= ∞, (7.22)

which is equivalent to τ∆ < ∞ a.s. from any initial distribution on Z+ [1,
Chapter 8]. We will assume that (7.22) holds. This also implies that the process
does not explode. Thus, HC-1,2 automatically hold. Next, we introduce an
array of random variables that are crucial for the analysis. Let x ∈ Z+ and
y ∈ Z+∪{−1} satisfying x < y let Tx,y be a random variable whose distribution
is the same as τy under Px. For each y, Tx,y ⪯ Tx+1,y ⪯ · · · and Tx,y+1 ⪯ Tx,y,
where for two random variables X and Y , X ⪯ Y means that X is stochastically
dominated by Y . Therefore, without loss of generality, we may assume all these
RVs are realized in one probability space with the stochastic domination ⪯
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replaced by a pointwise inequality ≤. With this, let Sy = limx→∞ Tx,y and let
S = supSy = S−1. This RV represents the passage time from +∞ to ∆ = −1,
and

E[S] =

∞∑
n=1

1

λnπn

∞∑
i=n+1

πi,

see [1, Chapter 8]. In order to apply our results, we need the following lemma.

Lemma 7.2. 1. Suppose E[S] < ∞. Then:

(a) λcr ∈ (0,∞).

(b) Ex[exp(λτ∆)] < ∞ if and only if E[exp(λS)] < ∞ if and only if
λ < λcr.

(c) Ex[exp(λcrτ∆ ∧ τx)] < ∞.

2. Suppose E[S] = ∞. Then λcr = 0 or λcr > 0. In the latter case,
limx→∞Ex[exp(λτ∆)] = ∞ for all λ ≤ λcr.

Proof. Suppose E[S] < ∞. Let y ∈ Z+∪{−1}, and define hy(t) = supx>y Px(τy >
t) = P (Sy > t). Thus, hy(t) < E[Sy]/t. Since hy(t+ s) ≤ hy(t)hy(s), it follows

from Fekete’s lemma that limt→∞
lnhy(t)

t = inft>0
lnhy(t)

t = −cy. Thus, for
every t > 0

− cy ≤ lnhy(t)

t
≤ ln(E[Sy]/t)/t. (7.23)

And by choosing t > E[Sy], the righthand side of (7.23) is strictly negative,
which guarantees cy > 0. Since Sy =

∑∞
x=y Tx+1,x, it follows from dominated

convergence that E[Sy] → 0 as y → ∞, using this in (7.23) shows that cy → ∞
as y → ∞. Also, cy < ∞ because Sy stochastically dominates Ty+1,y which is
Geom(λy+1 + µy+1). From the definition of cy, E[exp(λSy)] < ∞ if λ < cy and
= ∞ if λ > cy. Also S = S−1 is the independent sum of Sy and Ty,−1. Thus
for any λ > 0,

E[exp(λS)] = E[exp(λSy)]Ey[exp(λτ∆)].

If the lefthand side is finite, then both terms on the right-hand side are finite. If
the lefthand side is infinite, by choosing y such that cy > λ, the first term on the
right-hand side is finite, and therefore the second term on the right-hand side
is infinite. This also shows that λcr = c−1. Finally, if E[exp(λcrS)] < ∞, the
family of RVs (Ty,−1 : y ∈ Z+) is uniformly integrable. This violates Proposition
2.4, whose proof is valid in the continuous time setting with only the change
of notation. Since infy Py(τy < τ∆) > 0, Ex[exp(λcrτ∆ ∧ τx)] < ∞ as a result
of Proposition 2.5, which is also valid in the present setting with the obvious
adaptations.

Next, consider the case E[S] = ∞. If λcr > 0, mononote convergence gives
that for any λ ∈ (0, λcr), limx→∞Ex[exp(λτ∆)] = E[exp(λS)] = ∞.

With the lemma, we can prove the following characterization and descrip-
tion of QSDs for Birth and Death processes. This result is equivalent to [26,
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Theorem 3.2], which was the first to characterize and describe all QSDs for
Birth and Death processes through spectral analysis of the transition kernels
and corresponding orthogonal polynomials.

Theorem 7.5 (Theorem 3.2, [26]). 1. Suppose E[S] < ∞. Then λcr > 0,
and there exists a unique QSD, which is also minimal.

2. Suppose that E[S] = ∞. Then either λcr = 0 and there are no QSDs
or λcr > 0 and for every λ ∈ (0, λcr] there exists a QSD with absorption
parameter λ.

3. When exists, a QSD with absorption parameter λ > 0 is unique and given
by the formula

νλ(y) =
λ

qy − λ

1

Ey[exp(λτ∆), τ∆ < τy]
, y ∈ S. (7.24)

We comment that letting y = 0 in (7.24), a straighforward calculation revelas
that

νλ(0) =
λ

µ0

(this can be independently obtained from [26, equation (3.4)]). Thus, a nec-
essary condition for the existence of a QSD with absorption parameter λ is
λ < µ0. As νλ(−1) = 0, these two initial values can be used to solve the system
of difference equations resulting from (7.5).

We also comment that the argument leading to (7.24) is valid for any chain
which is downward skip-free and that a simple calculation shows that when
E[S] < ∞ and λ ∈ (0, λcr), the pointwise limit of (Kλ(n, ·) : n ∈ N) along any
convergent subsequence can be normalized to be a probability measure on S
which satisfies the system of difference equations resulting from (7.5) but is not
a QSD.

Proof. If E[S] < ∞, Lemma 7.2-1 guarantees that the conditions of Theorem 7.1
hold. This yields the existence and uniqueness of a minimal QSD. For λ < λcr,
supx Ex[exp(λτ∆)] ≤ E[exp(λS)] < ∞ and therefore Theorem 7.3-2 shows that
no other QSDs exist.

If E[S] = ∞ and λcr > 0, Lemma 7.2-2 and Corollary 7.1 give the existence of
QSDs for each of the absorption parameters in the range (0, λcr]. The remaining
case is E[S] = ∞ and λcr = 0. In this case, no QSDs exist, as this will lead to
a violation of (1.5) for each of the discretized processes.

It remains to establish the representation formula. The formula holds in the
infinite MGF regime due to (7.13). Suppose that ν is a QSD with absorption
parameter λ in the finite MGF regime, then Theorem 7.4 implies that it is in the
convex hull of Kλ([x], ·) where [x] ranges over Sdλ. In particular, the latter is not
empty. We will show that for any sequence (xn : n ∈ N) satisfying limn→∞ xn =
∞, Kλ(xn, ·) converges pointwise to a limit independent of the sequence, given
by the formula in the statement of the theorem. As by assumption Sdλ is not
empty, this guarantees that Sdλ has a unique element equal to that limit.
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Indeed,

Kλ(xn, y) =
Exn

[exp(λτy)]Iλ(y)

Exn
[
∫ τ∆

0
eλsds]

,

where Iλ(y) =
∫∞
0

eλsPy(XXXs = y)ds. The denominator is equal to 1
λ (Exn [exp(λτ∆)]− 1).

Lemma 7.2-2 gives that limn→∞Exn [exp(λτ∆)] = ∞. By the strong Markov
property, Exn

[exp(λτ∆)] = Exn
[exp(λτy)]Ey[exp(λτ∆)], and therefore the de-

nominator is asymptotically equivalent to Exn
[exp(λτy)]λ−1Ey[exp(λτ∆)], re-

sulting in

lim
n→∞

Kλ(xn, y) =
λIλ(y)

Ey[exp(λτ∆)]
.

We evaluate Iλ(y). Let J = inf{t ∈ R+ : XXXt ̸= XXXt−}, the time of the first jump.
Under Py, J ∼ Exp(qy). Breaking the integral in the definition of Iλ(y) we have

Iλ(y) = Ey[

∫ J

0

eλsds] + Ey[exp(λτy), τy < τ∆]Iλ(y),

and so

Iλ(y) =
Ey[exp(λJ)]− 1

λ(1− Ey[exp(λτy), τy < τ∆])
,

which in turn gives

lim
n→∞

Kλ(xn, y) =
Ey[exp(λJ)]− 1

Ey[exp(λτ∆)](1− Ey[exp(λτy), τy < τ∆])

=
λ

qy − λ

1

Ey[exp(λτ∆), τ∆ < τy]

8 Analysis of Minimal QSDs for a One-Parameter
Family

8.1 Main Results

In this section, we study in detail the minimal QSDs for one-parameter family
processes, all of which are special cases of the rooted tree of Section 6.5. We show
that for some values of the parameter, λcr is in the infinite MGF regime, and
for others, it is in the finite MGF regime. Moreover, when the latter alternative
holds, the minimal QSDs form a two-dimensional convex cone (Proposition 8.3),
and although the chain is aperiodic, the limiting conditional probabilities exhibit
periodicity (Theorem 8.1).

The model is essentially two birth and death chains glued at zero. Fix
q ∈ ( 12 , 1), let δ ∈ (0, q], and set r = q − δ. Consider the Markov chain X =
(Xn : n ∈ Z+) on Z∪{∆} with transitions as in Figure 3. Let λcr be the critical
absorption parameter for X, for x ∈ Z∪ {∆} define τx = inf{n ∈ Z+ : Xn = x}
and write Px for the probability of X.
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21− q1− q1− q

q q q

Figure 3: Transition Probabilities Diagram

We first examine the dependence of the critical absorption parameter λcr on
δ. To do that, let λ0 denote the critical absorption parameter for the system
restricted to Z+ (or equivalently −Z+) and absorbed when hitting 0.

Proposition 8.1. 1. exp(−λ0) = 2
√
q(1− q)

2. Let δcr =
√
q(
√
q −

√
1− q). Then

exp(−λcr) =

{
q − δ + q(1−q)

q−δ δ ∈ (0, δcr)

exp(−λ0) δ ∈ [δcr, q]
.

Moreover,
δ ∈ (0, δcr) {δcr} (δcr, q]
λcr < λ0 = λ0

E0[exp(λcrτ∆)] = ∞ < ∞
(8.1)

In particular, λcr is in the finite or infinite MGF regime according to the
value of δ.

We now present the results on the minimal QSDs according to the value of δ.

Proposition 8.2. Let δ ≤ δcr. Then

1. λcr is in the infinite MGF regime and condition (2.1) holds. In particular,
X has a unique minimal QSD given by

νcr(x) =
eλcr − 1

Ex[exp(λcrτ∆), τ∆ < τx]
, x ∈ Z.

2. Condition (2.3) holds if and only if δ < δcr.

Next, we discuss the case δ > δcr. It follows from Corollary 2.1 that for
every λ ∈ (0, λcr], there exists a QSD with absorption parameter λ. For real y,
we adopt the convention y+ = max(y, 0), y− = (−y)+ = max(−y, 0). Let

ρ =

√
1− q

q
∈ (0, 1).
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Figure 4: absorption parameter dependence on δ when q = 0.95

With this,
δcr = q − qρ.

Since r+ δ = q, we have that r < q − δcr = qρ =
√
q(1− q). As a result, in the

δ > δcr regime, we have

r = α
√
q(1− q), for some α ∈ [0, 1),

δ = q − α
√

q(1− q) = q(1− αρ).

Proposition 8.3. Let δ > δcr. Then the set of minimal QSDs Sλ is a two-
dimensional convex cone spanned by {µλ0

+ , µλ0
− }, where

µλ0
± (y) =

(1− ρ)2

1− ρα
ρ|y| ×

{
1 y = 0
1
2 + (1− α)y± y ∈ Z − {0}

(8.2)

Define the minimal QSD µλ0 ,

µλ0(y) =
1

2
(µλ0

+ + µλ0
− )(y) =

(1− ρ)2

1− ρα
ρ|y| ×

{
1 y = 0
1
2 + 1

2 (1− α)|y| y ∈ Z − {0}.

We have the following result

Theorem 8.1. Suppose δ > δcr. For x, y ∈ Z, define

h(x) =
(1− α)|x|

1 + (1− α)|x|
κ(x) = sgn(x)h(x)

(8.3)

Then
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1. lim
n→∞

Px(X2n = y|τ∆ > 2n) = µλ0(y) + 12Z(y − x)κ(x)
µλ0
+ (y)− µλ0

− (y)

2
.

2. lim
n→∞

Px(X2n+1 = y|τ∆ > 2n+1) = µλ0(y)+ 12Z+1(y−x)κ(x)
µλ0
+ (y)− µλ0

− (y)

2
.

In other words, the conditional probabilities along each of the subsequences
of even times and odd times converge to explicitly identifiable limits. On each
such sequence, the limit is not a QSD, with one notable exception, x = 0, where
the limit is µλ0 . When x ̸= 0, the restriction of the limit to even integers and
the restriction to the odd integers are each given by convex combinations of the
QSDs in Proposition 8.3, one of which is µλ0 .

8.2 Proof of Proposition 8.1

Let Y = (Yn : n ∈ Z+) be the Birth and Death process with transitions as in
Figure 5. Clearly, this transition function satisfies Assumption HD-1, HD-2
and HD-3.

△ 0 1 2 3 4

r
1− q

δ q

1− q 1− q 1− q

q q

Figure 5: The Birth & Death Process Y

For y ∈ Z+ ∪ {∆}, let τYy = inf{n ∈ N : Yn = y}. We also need the induced
process Y0, defined as follows:

Y 0
n = Yn1{τY

0 >n}.

That is, Y0 is Y, absorbed at 0. Note that the distribution of Y starting
from x coincides with the distribution of |X| starting from x ∈ Z+, and that
the distribution of Y0 starting from x ∈ N coincides with the distribution of
|X|+1 with α = 0 (hence δ = q), starting from x+1. Thus, we can reduce the
discussion to the auxiliary birth and death process from Figure 5.

Proof of Proposition 8.1. Starting from x ≥ 1, Y must pass through 0 in order
to get to ∆. Therefore for all values of δ, λcr ≤ λ0.

Step 1: Calculation of λ0. Define f(x) = f(x, λ) = Ex[exp(λτ0)], x ∈ N,
and condition on the first step from x and spatial homogeneity of the process
to obtain

f(1) = eλ[q + (1− q)f(2)] and

= eλ[q + (1− q)f2(1)]

51



Hence we have a quadratic equation for f(1) = f :

eλ(1− q)f2 − f + eλq = 0

The quadratic formula gives

f1,2(1) =
1±

√
1− 4e2λ(1− q)q

2eλ(1− q)
(8.4)

Suppose λ < λcr. Then since f(1) is real-valued, we must have eλ ≤ 1

2
√

(1− q)q
.

Also, since in this region, the function λ → f(1, λ) is increasing, we have

f(1, λ) =
1−

√
1− 4e2λ(1− q)q

2eλ(1− q)
. With this, we conclude that

eλ0 =
1

2
√
(1− q)q

, E1[exp(λ0τ0)] = f(1, λ0) =

√
q

1− q
< ∞. (8.5)

Step 2. Calculation of λcr. Similar first-step analysis applied to v = v(λ) =
E0[exp(λτ∆)] gives

v = eλ[δ + rv + (1− q)fv],

where here f = f(1, λ). That is,

v[(1− eλ(q − δ + (1− q)f)] = eλδ.

Hence

v(λ) =
eλδ

1− eλ(q − δ + (1− q)f)
(8.6)

Using the fact that u is non-decreasing as a function of λ, u is finite if and only
if eλ(q − δ + (1− q)f) < 1. This implies

λcr = sup{λ > 0 : eλ(q − δ + (1− q)f) < 1} (8.7)

(here we take sup ∅ = 0). Since we already know that λcr ≤ λ0, this supremum
is finite, and we only need to consider λ ≤ λ0. The supremum is clearly non-
decreasing in δ. We examine the two extreme values for δ:

• When δ = 0, eλ(q+(1−q)f) > 1 for all λ > 0 and therefore the supremum
is zero.

• For δ = q, eλ0(0 + (1− q)f(1, λ0)) =
1
2 < 1, and so λcr = λ0.

From (8.7), λcr = λ0 if and only if

eλ0(q − δ + (1− q)f(1, λ0)) ≤ 1,

or equivalently,

δ ≥ q + (1− q)f(1, λ0)− e−λ0 = q −
√

q(1− q) =
√
q(
√
q −

√
1− q) = δcr.
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By (8.6), u(λ0) = ∞ when δ = δcr and u(λ0) < ∞ when δ > δcr.
It remains to find λcr when δ < δcr. Because δ < δcr, we have eλ0 [q − δ +

(1− q)f(λ0)] > 1, and therefore λcr is the unique solution in (0, λ0) to

eλ[q − δ + (1− q)f(λ)] = 1,

and from (8.7), u(λcr) = ∞. Since f =
1−

√
1−4e2λ(1−q)q
2eλ(1−q) the equation to be

solved becomes

eλ[q − δ +
1−

√
1− 4e2λ(1− q)q

2eλ
] = 1 (8.8)

After simplifying (8.8), we obtain the expression in the statement of the propo-
sition, completing the proof.

8.3 Proof of Proposition 8.2

Proof of Proposition 8.2. In the case δ < δcr, Proposition 8.1 gives Ex[exp(λcrτ∆)] =
∞. We examine

Ex[exp(λcrτ∆), τ∆ < τx].

The key is to show
E0[exp(λcrτ∆), τ∆ < τ0] < ∞. (8.9)

We consider two cases:

1. δ < δcr. In this case, λcr < λ0, by Definition 1.2, we have

E0[exp(λcrτ∆), τ∆ < τ0] < ∞

2. δ = δcr. In this case λcr = λ0, condition on the first step from x = 0 and
spatial homogeneity of the process yields

E0[exp(λcrτ∆), τ∆ < τ0] = δeλcr < ∞.

Therefore, by (8.9) and the irreducibility we conclude for x ∈ S,

Ex[exp(λcrτ∆), τ∆ < τx] < ∞,

which satisfies the necessary and sufficient condition in Theorem 2.1 and hence
we obtain a unique minimal QSD given by (2.2).

Next, for λ ≤ λ0, we define u(λ) = E0[exp(λτ0), τ0 < τ∆]. Conditioning on
the first step

u(λ) = (q − δ)eλ + (1− q)eλf(λ),

where f(λ) = E1[exp(λτ0), τ0 < τ∆]. The proof of Proposition 8.1 gives f(λ)
(see the discussion below (8.4)), and so

u(λ) = (q − δ)eλ +
1−

√
1− 4q(1− q)e2λ

2
.

We have two cases:
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1. δ < δcr. In this case, λcr < λ0, the left derivative of u(λ) at λcr is finite,
and therefore E0[exp(λcrτ0)τ0, τ0 < τ∆] < ∞.

2. δ = δcr. In this case, λcr = λ0, the left derivative of u(λ) at λ0 is infinite,
and therefore E0[exp(λ0τ0)τ0, τ0 < τ∆] = ∞.

Hence, by Proposition 1.2-2, Propostion 3.3 and the irreducibility we conclude
for x ∈ S,

Ex[exp(λcrτx)τx, τx < τ∆] < ∞

if and only if δ < δcr, completing the proof.

8.4 Proof of Proposition 8.3

Throughout this section, we assume δ > δcr, a case in which the critical absorp-
tion parameter for all of the three processes X, Y and Y0 is the same and is
equal to λ0. Moreover, λ0 is in the finite MGF regime for all three processes by
Proposition 8.1.

Lemma 8.1. 1. Y0 has a unique minimal QSD νλ0,0 given by

νλ0,0(y) = (1− ρ)2yρy−1, y ∈ N

2. Y has a unique minimal QSD νλ0 given by

νλ0(y) =
(1− ρ)2

1− ρα
(1 + (1− α)y)ρy, y ∈ Z+.

Because λ0 is in the finite MGF regime and both Y and Y0 satisfy condition
2.11, it follows from Proposition 2.3-2, that each has unique minimal QSD, and
so the identities above can be verified by direct computation. Alternatively, a
proof of the first can be found in [20, Proposition 6] or [18, Theorem 5.1], and
a proof of the second can be found in [24].

Proof of Proposition 8.3. Suppose ν is a minimal QSD for X. Define

α(y) =

{
ν(y) + ν(−y) y ̸= 0

ν(0) y = 0

β(y) = ν(y)− ν(−y).

A straightforward verification whose details are omitted reveals that the restric-
tion of α to Z+ satisfies the system of equations (1.6) for the transition function
for Y with λ = λ0. The set of solutions to this equation is one dimensional
(the equation for j = 0 shows that ν(0) uniquely determines ν(1), and these
two determine ν(j) for all j = 1, . . . ), and as νλ0 is a strictly positive solution
to the equations, we have that for some c > 0

α(y) = cνλ0(|y|), y ∈ Z.
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Summing over y ∈ Z+, the righthand side gives c, and the lefthand side gives 1.
Therefore c = 1. An identical argument leads to the conclusion that there exists
some constant c such that the restriction of β to N is cνλ0,0, and as a result

β(y) = c · sgn(y)νλ0,0(|y|), y ∈ Z.

Since ν(0) = α(0) and for all other y, ν(y) = α(y)+β(y)
2 , we have

ν(y) =

{
νλ0(0) y = 0
1
2

(
νλ0(|y|) + c · sgn(y)νλ0,0(|y|)

)
y ̸= 0

For all values of c, the function on the righthand side sums to 1. It also satisfies
(1.6) for the transition function for X with λ = λ0. It is nonnegative and,
therefore, a minimal QSD if and only if

inf
y∈N

νλ0(y)− |c|νλ0,0(y) ≥ 0.

Using the explicit formulas for the two QSDs in the inequality, we obtain

|c| ≤ inf
y∈N

ρ(1 + (1− α)y)

(1− ρα)y
=

ρ(1− α)

1− ρα
.

Therefore ν is necessarily a convex combination of the two QSDs obtained by

choosing c = ±ρ(1−α)
1−ρα , which we respectively denote by µλ

±, and are given by

µλ0
± (y) =

1

2
(1 + δ0(y))ν

λ0(|y|)± 1

2

ρ(1− α)

1− ρα
sgn(y)νλ0,0(|y|). (8.10)

Hence Lemma 8.1-1 and -2 give

µλ0
± (y) =

(1− ρ)2

1− ρα
ρ|y| ×

{
1 y = 0
1
2 + (1− α)y± y ∈ Z − {0}

8.5 Proof of Theorem 8.1

To distinguish between probabilities and expectations for X and Y0, we denote
the distribution of Y starting from (state or distribution) · by Q·. The proof of
the theorem requires the following results that show the asymptotic distribution
of Y0 and Y, respectively.

Lemma 8.2. 1. Suppose x, y ∈ N. Then

Qx(Yn = y, τY0 > n) ∼ e−λ0n

√
8

πn3
xρ−xyρy1{y∈x−n+2Z}

= e−λ0n

√
8

πn3
xρ−x

1{y∈x−n+2Z}ρ

(1− ρ)2
νλ0,0(y).
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2. Suppose x ∈ N. Then

Qx(τ
Y
0 > n) ∼ e−λ0n

√
8

πn3
xρ−x

ρ

(1− ρ2)2

{
2ρ n ∈ x+ 2Z

1 + ρ2 n ∈ x+ 2Z − 1

Lemma 8.3. Suppose δ > δcr and let r = α
√
q(1− q) for some α ∈ [0, 1).

Then for x, y ∈ Z+

1. Qx(Yn = y, τY∆ > n) ∼ (1− ρ)2

1− αρ
ρy (1 + (1− α)y)Qx(τ

Y
∆ > n).

2.

Qx(τ
Y
∆ > n) ∼ e−λ0n

√
8

πn3

(1− αρ)ρ−x

[(1− ρ2)(1− α2)]2

×
(
1 + ρ2

2ρ

)
·
[
Jx+n
2

((
1 + α2

2α

)
+ (1− α2)x

(
1
α

))]
Where J2 is the 2× 2 exchange matrix.

As also shown in [24], Lemma 8.2 and Lemma 8.3 imply that the limiting
conditional distributions exist and are given by:

Corollary 8.1. 1.

Qx(Yn = y|τY0 > n) ∼ νλ0,0(y)×

{
12N(y)

(1+ρ)2

2ρ n ∈ x+ 2Z

12N−1(y)
(1+ρ)2

1+ρ2 n ∈ x+ 2Z − 1

2. Suppose δ > δcr. Then

Qx(Yn = y|τY∆ > n) ∼ (1− ρ)2

1− ρα
ρy (1 + (1− α)y) ∼ νλ0(y).

We will give the proof of Lemma 8.2 and Lemma 8.3 in Section 8.6.

Proof of Theorem 8.1. Obsevre that for every x ∈ Z, the distribution of |X|
under Px coincides with the distribution of Y under Q|x|, and in particular,

Px(Xn = 0|τ∆ > n) = Q|x|(Yn = 0|τY∆ > n) → νλ0(0).

Next, consider Px(Xn = y|τ∆ > n) for general y ∈ Z \ {0}. Assume for
simplicity x ≥ 0, we have

Px(Xn = y, τ∆ > n) = 1{xy≥0}Px(Xn = y, τ0 > n) + Px(Xn = y, τ0 ≤ n).
(8.11)

By the Strong Markov property and the symmetry with respect to 0, the
second summand on the righthand side is equal to
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1

2
Qx(Yn = |y|, τY0 ≤ n) =

1

2

(
Qx(Yn = |y|)−Qx(Yn = |y|, τY0 > n)

)
. (8.12)

Combine (8.11)

Px(Xn = y, τ∆ > n) =
1

2
Qx(Yn = |y|) + 1

2
sgn(xy)Qx(Yn = |y|, τY0 > n) (8.13)

However, the second summand on the righthand side is nonzero only when y
and x− n have the same parity.

Thus, we will consider the convergence for x−n even and x−n odd, respec-
tively. In particular, since processes X and Y won’t be affected by the parity,
we sum over all y and use

Qx(τ
Y
∆ > n) ∼ e−λ0n

√
8

πn3

(1− αρ)ρ−x

[(1− ρ2)(1− α2)]2

×
(
1 + ρ2

2ρ

)
·
[((

1 + α2

2α

)
+ (1− α2)x

(
1
α

))
+

((
2α

1 + α2

)
+ (1− α2)x

(
α
1

))]
∼ e−λ0n

√
8

πn3

(1− αρ)ρ−x(1 + (1− α)x)

[(1− ρ)(1− α)]2

We have the following two cases:

• If x− n even, using equation (8.13), Lemma 8.2 and Lemma 8.3

Px(Xn = y|τ∆ > n) ∼ 1

2

Qx(Yn = |y|)
Qx(τY∆ > n)

+
1

2
sgn(xy)1{y∈2Z}

Qx(Yn = |y|, τY0 > n)

Qx(τY∆ > n)
(8.14)

∼ 1

2
(1 + δ0(y))ν

λ0(|y|) + 1

2
sgn(xy)1{y∈2Z}he(x)ν

λ0,0(|y|)
(8.15)

• Similarly, if x− n odd,

Px(Xn = y|τ∆ > n) ∼ 1

2

Qx(Yn = |y|)
Qx(τY∆ > n)

+
1

2
sgn(xy)1{y∈2Z+1}

Qx(Yn = |y|, τY0 > n)

Qx(τY∆ > n)
(8.16)

∼ 1

2
(1 + δ0(y))ν

λ0(|y|) + 1

2
sgn(xy)1{y∈2Z+1}ho(x)ν

λ0,0(|y|)
(8.17)

where

he(x) = ho(x) =
ρ(1− α)2x

(1− ρα)(1 + (1− α)x)
.
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In addition, observe from (8.10)

1

2
(µλ0

+ + µλ0
− )(y) =

1

2
(1 + δ0(y))ν

λ0(|y|),

and
1

2
(µλ0

+ − µλ0
− )(y) =

1

2

ρ(1− α)

1− ρα
sgn(y)νλ0,0(|y|)

Therefore, for x ∈ Z+, n ∈ Z+, define

h(x) =
(1− α)x

1 + (1− α)x
,

and

µλ0(y) =
1

2
(µλ0

+ + µλ0
− )(y),

we have

1.

Px(X2n = y|τ∆ > 2n)

→ 1

2
(µλ0

+ + µλ0
− )(y) + 12Z(y − x)sgn(x)

(1− α)x

1 + (1− α)x

1

2
(µλ0

+ − µλ0
− )(y)

= µλ0(y) + 12Z(y − x)κ(x)
(µλ0

+ − µλ0
− )(y)

2

2.

Px(X2n+1 = y|τ∆ > 2n+ 1)

→ 1

2
(µλ0

+ + µλ0
− )(y) + 12Z+1(y − x)sgn(x)

(1− α)x

1 + (1− α)x

1

2
(µλ0

+ − µλ0
− )(y)

= µλ0(y) + 12Z+1(y − x)κ(x)
(µλ0

+ − µλ0
− )(y)

2

where
κ(x) = sgn(x)h(x)

By symmetry with respect to 0 the above results can be extended to x ∈ Z
with

h(x) =
(1− α)|x|

1 + (1− α)|x|
,

completing the proof.

58



8.6 Tail Estimates

In this section, we prove Lemma 8.2 and Lemma 8.3. Recall Y is a Birth and
Death process on Z+ ∪ {∆} with ∆ being a unique absorbing state and the
process Y0, defined as follows:

Y 0
t = Yt1{τY

0 >t}.

In order to prove Lemma 8.2 and Lemma 8.3, we need an auxiliary result
on simple symmetric random walks. Let S = (Sn : n ∈ Z+) be the simple
symmetric random walk on Z. Let σ0 = inf{n ≥ 0 : Sn = 0} and write Px, Ex

for the probability and expectation for S with S0 = x. We omit the subscript
and write P and E for the case x = 0.

Proof of Lemma 8.2. We assume first x− y and n are both even. For x, y ≥ 1,
the reflection principle gives

Px(Sn = y, σ0 > n) = Px(Sn = y)− Px(Sn = −y)

= P (Sn = y − x)− P (Sn = y + x)

Observe that the Qx probability of each of the paths for Y on the left-hand
side is the probability under the random walk, times the change of measure
coefficient, which is 2nq(n−(y−x))/2(1− q)(n+(y−x))/2. Therefore we have

Qx(Yt = y, τY0 > n) = (2
√
q(1− q))n(

√
1− q

q
)y−x (P (St = y − x)− P (St = y + x))

(8.18)

= e−λ0nρy−x (P (Sn = y − x)− P (Sn = y + x)) . (8.19)

This and the local central limit theorem with estimates for one-dimensional
simple symmetric random walk [17, Proposition 2.5.3] give the first claim. It
remains to extend it to the case where both y − x and n are odd. In this case,
we have

P (Sn = y − x)− P (Sn = y + x) =
1

2
(P (Sn−1 = y − x− 1)− P (Sn−1 = y + 1 + x))

+
1

2
(P (Sn−1 = y − x+ 1)− P (Sn−1 = y + x− 1))

=

√
8

π(n− 1)3

(
xy +

y

2
((x+ 1)η1 + (x− 1)η2)

)
As a result, Lemma 8.2-claim 1 holds whenever y−x and n have the same parity.

For the second claim, when summing over y using (8.19), we split the sum-
mation according to whether y ≤ n1/3δ(n) or y > n1/3δ(n),

Qx(τ
Y
0 > n) = e−λ0n[

n1/3δ(n)∑
y=1

+
∑

y>n1/3δ(n)

ρy−x(P (St = y − x)− P (St = y + x))]

= I1 + I2
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Where

I1 ∼ e−λ0n

√
8

πn3
xρ−x

n1/3 δ(n)∑
y∈N,y−x−n∈2Z

yρy.

Thus, we need to consider the following two cases:

• x− n ∈ 2Z. Then we need to sum over y ∈ 2N:∑
y∈2N,y≤n1/3δ(n)

yρy ∼ 2
∑
z∈N

z(ρ2)z ∼ 2ρ2

(1− ρ2)2
. (8.20)

• x − n ∈ 2Z − 1. Then the summation is over odd y and is therefore
asymptotically equivalent to

∞∑
y=1

yρy −
∑
y∈2N

yρy ∼ ρ

(1− ρ)2
− ρ2

(1− ρ2)2
(8.21)

=
ρ

(1− ρ)2

(
1− 2ρ

(1 + ρ)2

)
(8.22)

=
ρ(1 + ρ2)

(1− ρ2)2
. (8.23)

This gives the asymptotic for I1. As 0 ≤ I2 ≤ C(n)xρ−x
n1/3δ(n) + 1

(1− ρ)2
ρn

1/3δ(n)+1 =

o(I1), the proof is now complete.

Next, we give the proof of Lemma 8.3. We will break it into two pieces and
show the second claim first.

Proof of Lemma 8.3-claim 2. Observe that the distribution of τY∆ under Qx is
the same as the distribution of τY0 under Qx+Geom(δ/q). In particular, this
gives

Qx(τ
Y
∆ > n) =

∞∑
k=1

δ

q
(1− δ

q
)k−1Qx+k(τ

Y
0 > n).

We will write the sum on the right-hand side as J1 + J2 + J3, where J1 is
the summation over k = 1 to k = n1/3γ(n). J2 is over n1/3γ(n) < k < n and
J3 is over k > n. Clearly, J3 ≤ (1− δ/q)n+1, but since δ > δcr, 1− δ/q < e−λ0

and so J3 decays to zero at a geometric rate faster than e−λ0 . Also since

Qx(τ
Y
0 > n) = e−λ0n

(
E[ρSn , Sn > −x]− ρ−2xE[ρSn , Sn > x]

)
= e−λ0n

(
E[ρSn ,−x < Sn ≤ x] + (1− ρ−2x)E[ρSn , Sn > x]

)
.

Then for J2 we will use the upper bound Qx+k(τ
Y
0 > n) ≤ e−λ0nE[ρSn , Sn >

−x− k] ≤ e−λ0nρ−x−k+1(1− ρ)−1. In particular,
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J2 ≤ e−λ0n
δ

q
ρ−x(1− ρ)−1

∑
k

(1− δ/q)k−1ρ−k+1.

where (1− δ/q)/ρ = α < 1, so we have

J2 ≤ e−λ0n
δ

q
αn1/3γ(n)ρ−x(1− ρ)−1 = o(e−λ0t). (8.24)

Finally, we can turn to J1. We have

J1 = J1,1 + J1,2,

where

J1,j =
δ

q

n1/3γ(n)∑
k=1

(1− δ/q)k−1Ij(n, x+ k).

To simplify the analysis, we will use (1− δ/q)ρ−1 = α,
δ

q
= 1− αρ. Thus

J1,1 =
δ

q

n1/3γ(n)∑
k=1

2n1/3γ(n)∑
y=1

e−λ0t(1− δ/q)k−1ρy−x−k(P (St = y − x− k)− P (St = y + x+ k))

∼ δ

q
e−λ0n

√
8

πn3
ρ−x

n1/3γ(n)∑
k=1

(1− δ/q)k−1ρ−k(x+ k)

2t1/3γ(n)∑
y=1

ρyy


∼ δ

q
e−λ0n

√
8

πn3
ρ−x−1α−x

n1/3γ(n)∑
k=1

αx+k−1(x+ k)

2t1/3γ(n)∑
y=1

ρyy

 .

Since y− (x+ k)− n must be even, we need to consider the following two cases
for the two summations above:

• x+ n ∈ 2Z. Then y − k ∈ 2Z:

J1,1 ∼ δ

q
e−λ0n

√
8

πn3

ρ−x−1

αx

 ∑
k∈2N,k≤n1/3γ(n)

αx+k−1(x+ k)

 ∑
y∈2N,y≤2n1/3γ(n)

ρyy


+

 ∑
k∈2N−1,k≤n1/3γ(n)

αx+k−1(x+ k)

 ∑
y∈2N−1,y≤2t1/3γ(n)

ρyy


Thus, using (8.20) and (8.23)

J1,1 ∼ e−λ0n

√
8

πn3

(1− αρ)ρ−x

[(1− ρ2)(1− α2)]2

(
1 + ρ2

2ρ

)
·
[(

1 + α2

2α

)
+ (1− α2)x

(
1
α

)]

61



• x+ n ∈ 2Z − 1. Then y − k ∈ 2Z − 1:

J1,1 ∼ δ

q
e−λ0n

√
8

πn3

ρ−x−1

αx

 ∑
k∈2N,k≤n1/3γ(n)

αx+k−1(x+ k)

 ∑
y∈2N−1,y≤2t1/3γ(n)

ρyy


+

 ∑
k∈2N−1,k≤n1/3γ(n)

αx+k−1(x+ k)

 ∑
y∈2N,y≤2t1/3γ(n)

ρyy


Thus, (8.20) and (8.23) imply

J1,1 ∼ e−λ0n

√
8

πn3

(1− αρ)ρ−x

[(1− ρ2)(1− α2)]2

(
1 + ρ2

2ρ

)
·
[(

2α
1 + α2

)
+ (1− α2)x

(
α
1

)]
Next, notice that

J1,2 ≤ δ

q
e−λ0n

n1/3γ(n)∑
k=1

(1− δ/q)k−1
∑

y>2n1/3δ(n)

[
ρy−x−k(P (St = y − x− k)− P (St = y + x+ k))

]

≤ δ

q
e−λ0n

√
8

πn3
ρ−x−1α−x

n1/3γ(n)∑
k=1

αx+k−1(x+ k)

 ∑
y>2n1/3δ(n)

ρyy


≤ e−λ0n

√
8

πn3

(1− αρ)ρ−x

[(1− ρ)(1− α)]2
((1− α)x+ 1) (2n1/3δ(n) + 1)ρ2n

1/3δ(n) = o(J1,1).

This and (8.24) then give J1 + J2 ∼ J1,1, completing the proof.

We now compute Qx(Yn = y, τY∆ > n). We begin by finding the generating
function of expression, ϕx(β, y), defined as

ϕx(β, y) =

∞∑
n=0

βnQx(Yt = y, τY∆ > n).

By conditioning on the transition from Yn−1 to Yt, whenever y > 0, we have
that for all n > 0

Qx(Yn = y, τY∆ > n) = Qx(Yn−1 = y − 1)(1− q) +Qx(Yn−1 = y + 1)q

Therefore

ϕx(β, y) = Qx(Y0 = y) + (1− q)β

∞∑
n=1

βn−1Qx(Yn−1 = y − 1) + qβ

∞∑
n=1

βn−1Qx(Yn−1 = y + 1)

= δx(y) + (1− q)βϕx(β, y − 1) + qβϕx(β, y + 1). (8.25)

Similarly when y = 0, for n > 0 we have
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Qx(Yt = 0) = Qx(Yn−1 = 0)r +Qx(Yn−1 = 1)q,

so that
ϕx(β, 0) = δx(0) + rβϕx(β, 0) + qβϕx(β, 1). (8.26)

The calculation of difference equations (Appendix 8.6) gives

ϕx(β, y) = (qβ)−y
[
ηy+1 − (1− η)y+1

2η − 1
ϕx(β, 0)−

ηy − (1− η)y

2η − 1
(rβϕx(β, 0) + δx,0)

]
+ 1{y>x}(qβ)

x η
y−x − (1− η)y−x

2η − 1

Where η = γ−1βq and 1− η = γβ(1− q) for some γ > 0. Using this, we can
complete the proof of Lemma 8.3.

Proof of Lemma 8.3-Claim 1. Consider

ϕ̄x(β, y0) =
∑
y≥y0

ϕx(β, y) = I1 + I2 + I3.

where

I1 =
ϕx(β, 0)(qβ)

−y0

2η − 1

∑
y≥y0

(qβ)−(y−y0) (ηy(η − rβ)− (1− η)y((1− η)− rβ))

=
ϕx(β, 0)(qβ)

−y0+1

2η − 1

(
ηy0(η − rβ)

βq − η
− (1− η)y0((1− η)− rβ)

βq − (1− η)

)
We expand according to ηy = 2−y(1− ϵ)y and (1− η)y = 2−y(1+ ϵ)y for the

general y, only using the first two terms (coefficients of ϵ0 and ϵ1). All other
terms will lead to contributions of smaller orders. Hence We have

ϕ̄x(β, y) ∼
ϕx(β, 0)

2η − 1
(βq)−y+12−y

(
(1− ϵ)y(η − rβ)

βq − η
− (1 + ϵ)y((1− η)− rβ)

βq − (1− η)

)
= (2βq)−yϕ̄x(β, 0) + (2βq)−yyϕx(β, 0)(βq)

(
η − rβ

βq − η
+

(1− η)− rβ

βq − (1− η)

)
= (2βq)−yϕ̄x(β, 0)

(
1 + y

q + r − 2βq(1− q + r)

q − r

)
.

Where

ϕ̄x(β, 0) =
∑
y≥0

ϕx(β, y) = ϕx(β, 0)βq ×
β(q − r)

(βq − η)(βq − (1− η))
.

Therefore, taking β = eλ0 we have

Qx(Yn ≥ y, τY∆ > n) ∼ ρy
(
1 + y

q + r − ρ−1(1− q + r)

q − r

)
Qx(τ

Y
∆ > n).
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Observe that

q + r − ρ−1(1− q + r)

q − r
=

(
√
q −

√
1− q)(1− α)

√
q −

√
1− qα

=
1− ρ

1− ρα
(1− α),

so,

Qx(Yn ≥ y, τY∆ > n) ∼ ρy(1 + y
1− ρ

1− ρα
(1− α)︸ ︷︷ ︸

=C

)Qx(τ
Y
∆ > n).

Hence,

Qx(Yn = y, τY∆ > n) = Qx(Yt ≥ y, τY∆ > n)−Qx(Yt ≥ y + 1, τY∆ > n)

∼ ρy ((1 + Cy)− ρ(1 + C(y + 1)))Qx(τ
Y
∆ > n)

=
(1− ρ)2

1− ρα
ρy (1 + (1− α)y)Qx(τ

Y
∆ > n).

9 Appendix: Calculations for Section 8.6

To solve difference equations (8.25) and (8.26), we fix β < 1. We will find γ > 0
such that

γβ(1− q)︸ ︷︷ ︸
=1−η

+ γ−1βq︸ ︷︷ ︸
=η

= 1.

Setting Hx(β, y) = γyϕx(β, y), (8.25) and (8.26) are equivalent, respectively,
to

Hx(β, y) = γyδx,y + (1− η)Hx(β, y − 1) + ηHx(β, y + 1), y ≥ 1. (9.1)

Hx(β, 0) = δx,0 + rβHx(β, 0) + ηHx(β, 1) (9.2)

We first solve the system for the case y + 1 ≤ x. In this case, (9.1) gives

Hx(β, y + 1)−Hx(β, y) =
1− η

η
(Hx(β, y)−Hx(β, y − 1)) (9.3)

and

Hx(β, 1)−Hx(β, 0) =
(1− η − rβ)Hx(β, 0)− δx,0

η︸ ︷︷ ︸
Ix(β)

.

Hence we have

Hx(β, j + 1)−Hx(β, j) =

(
1− η

η

)j

(Hx(β, 1)−Hx(β, 0)) , j ≥ 2

64



Summing from j = 1 to y − 1, we then obtain

Hx(β, y)−Hx(β, 1) =

y−1∑
j=1

(
1− η

η

)j

Ix(β).

Hence we have

Hx(β, y) =
1− η

η

1− ( 1−ηη )y−1

1− 1−η
η

Ix(β) + Hx(β, 1)︸ ︷︷ ︸
=Ix(β)+Hx(β,0)

, y ≤ x.

Next, when y = x, we have the equation

Hx(β, x+ 1)−Hx(β, x) =
(1− η)(Hx(β, x)−Hx(β, x− 1))− γx

η

= (
1− η

η
)xIx(β)−

γx

η
,

and since for y > x we can also use (9.3), we have

Hx(β, y + 1)−Hx(β, y) = (
1− η

η
)yIx(β)− (

1− η

η
)y−x

γx

η
, y > x

Which gives the following formula

Hx(β, y)−Hx(β, x) =

y−1∑
j=x

(
(
1− η

η
)jIx(β)− (

1− η

η
)j−x

γx

η

)
, y ≥ x+ 1

Altogether,

Hx(β, y) =

y−1∑
j=1

(
1− η

η
)jIx(β)−

γx

η

y−1∑
j=x

(
1− η

η
)j−x +Hx(β, 1)

=

y−1∑
j=0

(
1− η

η
)jIx(β)−

γx

η

y−1∑
j=x

(
1− η

η
)j−x +Hx(β, 0).

To get ϕx(β, y), multiply by γ−y and let ω =
1− η

η
, we obtain

ϕx(β, y) = γ−y
1− ωy

1− ω
Ix(β)−

γx−y

η

1− ωy−x

1− ω
+ γ−yHx(β, 0).

Summing over all y, we have
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(
1

1−γ−1 − 1
1−ω/γ

)
1− ω

Ix(β) +
1

1− γ−1
Hx(β, 0)−

(
1

1−γ−1 − 1
1−ω/γ

)
η(1− ω)

.

Using γ−1βq = η we get

ϕx(β,1) = (βq)2
1

(βq − η)[βq − (1− η)]
ϕx(β, 0) + βq

1

(βq − η)[βq − (1− η)]
(−rβ)ϕx(β, 0)

− βq
1

(βq − η)[βq − (1− η)]
(1 + δx,0)

To get back to ϕx, we need to multiply both sides by γ−y and use the identity
(9.3). This gives

ϕx(β, y) =


(qβ)−y

[
ηy+1−(1−η)y+1

2η−1 ϕx(β, 0)− ηy−(1−η)y
2η−1 (rβϕx(β, 0) + δx,0)

]
, y ≤ x

(qβ)−y
[
ηy+1−(1−η)y+1

2η−1 ϕx(β, 0)− ηy−(1−η)y
2η−1 (rβϕx(β, 0) + δx,0) + (βq)x ηy−x−(1−η)y−x

2η−1

]
, y > x
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