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Law of Large Numbers

If you repeatedly sample from the UCONN student population, each time
independently of the past, then the proportion of graduate students you have sampled
will tend to proportion of graduate students in the population.

More generally,

If you repeatedly sample from the UCONN student population, each time
independently of the past and calculate the average GPA of the students you have
sampled, then these averages will converge to the average population GPA.

The corresponding mathematical statement is called the Law of Large Numbers:

Theorem 1

I Suppose that X1,X2, . . . are IID and E [|X1|] <∞.

Then
X1 + · · ·+ Xn

n︸ ︷︷ ︸
empirical average

→ E [X1]︸ ︷︷ ︸, a.s. and in L1

population average

.

Comments:

I This allows to estimate population averages through “small samples”.



Glivenko-Cantelli

If you repeatedly sample from the UCONN student population, each time
independently of the past and keep track of the GPA’s of students you have sampled,
then the proportion of students whose GPA is at most f will tend to the actual
corresponding proportions among entire student population.

# students sampled with GPA ≤ f

# students sampled︸ ︷︷ ︸
empirical distribution function

→ proportion students with GPA ≤ f︸ ︷︷ ︸
actual distribution function

.

The corresponding mathematical statement is known as the Glivenko-Cantelli lemma:

Theorem 2

I Suppose X1,X2, . . . are IID with distribution function F (f ) = P(X1 ≤ f ).

I Define the empirical distribution function F̂n(f ) =
#{Xj : j ≤ n,Xj ≤ f }

n
.

Then
F̂n → F , uniformly, a.s.

Comments:

I This is a corollary to the Law of Large Numbers.

I (in some cases gives) Approximation of F with relatively small number of samples.



A toy model to biological evolution

Population size dynamics Population

I increases by 1 with probability p, independently of past.

I decreases by 1 (if possible) with probability 1− p, independently of past.

Fitness dynamics

I When population increases, the new member is assigned a fitness value U[0, 1],
independently of everything else.

I When population decreases, the least fit individual is eliminated from the
population.

Question. How would population landscape look in the long run ?



What does model do ?

Here’s a simulation.
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Figure: # of members for fitness values, after T = 106 iterations. Here p = 0.8 (fc = 0.25)



What does model do ?

Explanation.

Let’s look at the increments in population size of those with fitness below f :

I When population increases goes up by 1 with probability f .
⇒ +1 with probability pf .

I When population decreases goes down by 1 with probability 1, or stays put if
population is zero.
⇒ −1 with probability (1− p).

Now

I Write Xt(f ) for the increment between time t and time t − 1.

I Forget that “stays put” part.

I Then adding the increments, LLN tells us

Population below f at time T =
∑

1≤j≤T

Xt(f ) ∼ TE [X1] = T (pf − (1− p)).



What does model do ?

We’ve observed:
I Population below f at time T =

∑
1≤j≤T

Xt(f ) ∼ TE [X1] = T (pf − (1− p)).

I Let fc =
1− p

p
.

From this, we observe that if
I f > fc , # those with fitness ≤ f goes to +∞, and eventually will never gets back

to 0.
I if f < fc , # those with fitness ≤ f goes to −∞.

So going back to original model:
I After some (random, but finite) time all those with fitness > fc will live forever.
I The part of population below fc will be repeatedly wiped out.
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Figure: # members with fitnesses below certain values



G-K for the model

The above considerations with a little bit of math, give:

Theorem 3

I Suppose p > 1
2

, and let fc = 1−p
p
∈ [0, 1).

I Define the empirical fitness distribution function

F̂T (f ) =
# members at time T with fitness ≤ f

# members at time T
.

I Let F be the distribution function of U[fc , 1].

Then
F̂T → F uniformly, a.s.

Comments:

I The effect of removing lowest fitnesses leads to a censored fitness distribution.

I This is therefore a “skewed” version of Glivenko-Cantelli, and coincides with G-K
when p = 1.



Fluctuations

LLN tells us that:
X1 + · · ·+ Xn ∼ nE [X1].

Or, upon “centering”, we can look at the “fluctuations”

(X1 − E [X1]) + · · ·+ (Xn − E [X1]) = o(n).

Question. what is the “real” order of “fluctuations” ?

I Assuming E [X 2
1 ] ∈ (0,∞), the second moment is Θ(n).

I Reasonable to assume fluctuations of order
√
n.

Let’s turn to Mike and his home-made Galton Board

https://www.youtube.com/watch?v=VQepRP-f6GA


Fluctuations

LLN tells us that:
X1 + · · ·+ Xn ∼ nE [X1].

Or, upon “centering”, we can look at the “fluctuations”

(X1 − E [X1]) + · · ·+ (Xn − E [X1]) = o(n).

Question. what is the “real” order of “fluctuations” ?

I Assuming E [X 2
1 ] ∈ (0,∞), the second moment is Θ(n).

I Reasonable to assume fluctuations of order
√
n.

Let’s turn to Mike and his home-made Galton Board

What did we just see ?

I The fluctuations exhibit some structure.

I We didn’t get the order, but feel free to analyze more videos...

This deserves a theorem.

https://www.youtube.com/watch?v=VQepRP-f6GA


Central Limit theorem

Theorem 4

I Suppose X1,X2, . . . are IID.

I (finite) Expectation E [X1] = µ.

I Variance E [(X1 − µ)2] = σ2 ∈ (0,∞).

Then

P

(∑n
j=1(Xj − µ)

σ
√
n

≤ x

)
→ Φ(x) where Φ(x) =

1
√

2π

∫ x

−∞
e−y2/2dy

is the distribution function of Gaussian (normal) with mean zero and variance 1 (AKA
N(0, 1)).

Comments:

I The fluctuations are of order of
√
n; and

I “ Universality”: after scaling, fluctuations tend to a normal distribution,
regardless of the original distribution of the Xj ’s.

Let’s prove it.

Warning: this is a deep result. Its proof is non-trivial.

I It would be convenient to center and normalize X1, . . . , by replacing Xj →
Xj−µ
σ

(look again at the statement of the theorem)

I The resulting RVs have mean zero and variance 1.



Proof of CLT, I

“Universality”
I If there exists a limit, then it is the same whatever the D is, as long as E [X1] = 0

and E [X 2
1 ] = 1.

Consider another such IID sequence Y1,Y2, . . . , independent of the Xj ’s.
Let

Ŝk =
Y1 + · · ·+ Yk−1 + Yk + Xk+1 + · · ·+ Xn√

n
and

Ŝk,0 =
Y1 + · · ·+ Yk−1 +��ZZYk + Xk+1 + · · ·+ Xn√

n
.

Then

f (Ŝn)− f (Ŝ0) =
n∑

j=1

f (Ŝ j )− f (Ŝ j−1)

=
n∑

j=1

(
f (Ŝ j,0) + f ′(Ŝ j,0)

Yj√
n

+ f ′′(Ŝ j,0)
Y 2
j

2n
+ ...

)

−
n∑

j=1

(
f (Ŝ j,0) + f ′(Ŝ j,0)

Xj√
n

+ f ′′(Ŝ j,0)
X 2
j

2n
+ ...)

)

=
n∑

j=1

(
f ′(Ŝ j,0)

Yj − Xj√
n

+ f ′′(Ŝ j,0)
X 2
j − Y 2

j

2n
+ ...)

)



Proof of CLT, I

“Universality”
I If there exists a limit, then it is the same whatever the D is, as long as E [X1] = 0

and E [X 2
1 ] = 1.

Consider another such IID sequence Y1,Y2, . . . , independent of the Xj ’s.
Let

Ŝk =
Y1 + · · ·+ Yk−1 + Yk + Xk+1 + · · ·+ Xn√

n
and

Ŝk,0 =
Y1 + · · ·+ Yk−1 +��ZZYk + Xk+1 + · · ·+ Xn√

n
.

Now take expectation.

E [f (Ŝn)− f (Ŝ0)] = E [
n∑

j=1

f (Ŝ j )− f (Ŝ j−1)]

= E [
n∑

j=1

(
f (Ŝ j,0) + f ′(Ŝ j,0)

Yj√
n

+ f ′′(Ŝ j,0)
Y 2
j

2n
+ . . .

)

−
n∑

j=1

(
f (Ŝ j,0) + f ′(Ŝ j,0)

Xj√
n

+ f ′′(Ŝ j,0)
X 2
j

2n
+ ...

)
]

=
n∑

j=1

(
E [f ′(Ŝ j,0)

Yj − Xj√
n

] + [f ′′(Ŝ j,0)
X 2
j − Y 2

j

2n
] + O(n−3/2)

)



Proof of CLT, I

“Universality”

I If there exists a limit, then it is the same whatever the D is, as long as E [X1] = 0
and E [X 2

1 ] = 1.

Consider another such IID sequence Y1,Y2, . . . , independent of the Xj ’s.
Let

Ŝk =
Y1 + · · ·+ Yk−1 + Yk + Xk+1 + · · ·+ Xn√

n
and

Ŝk,0 =
Y1 + · · ·+ Yk−1 +��ZZYk + Xk+1 + · · ·+ Xn√

n
.

E [f (Ŝn)− f (Ŝ0)] =
n∑

j=1

(
E [f ′(Ŝ j,0)

Yj − Xj√
n

] + E [f ′′(Ŝ j,0)
X 2
j − Y 2

j

2n
] + O(n−3/2)

)

=
n∑

j=1

E [f ′(Ŝ j,0)]E [
Yj − Xj√

n
] +

n∑
j=1

E [f ′′(Ŝ j,0)]E [
X 2
j − Y 2

j

2n
] + O(n−1/2)

= 0 + 0 + O(n−1/2)

= O(n−1/2)→ 0 as n→∞.

This shows universality.



Proof of CLT, II

Existence of limit

I Enough to show that there exists a choice for Y1,Y2, . . . for which the
distribution of Ŝn has a limit.

How ?

I We know from undergrad probability that if Y1 ∼ N(0, 1), the distribution of Ŝn

is N(0, 1) for all n, so we’ve found one...

I We can show limit of the form in the Theorem by a rather elementary
combinatorial calculation for random variables taking only two values.

This is done by an application of Stirling’s formula, and is the oldest version of
the CLT, known as deMoivre-Laplace theorem (1738).



CLT for Glivenko-Cantelli ?

Let’s do some recalling:

I When X1,X2, . . . IID, Glivenko-Cantelli states that empirical distribution function
converges to distribution function:

F̂n → F uniformly, a.s.

I That is
#{j ≤ n,Xj ≤ f }

n
→ P(X1 ≤ f ).

I Therefore the CLT for each fixed f is

√
n(F̂n(f )− F (f ))→ σf N(0, 1).

I Let’s assume X1,X2, . . . are U[0, 1]. Then

σ2
f = f (1− f ).

Question. for each n, LHS of (∗) is a process in f . Do these processes “converge” to
a process ?



CLT for Glivenko-Cantelli

Theorem 5

I Suppose X1,X2, . . . are IID U[0, 1] and let F be the distribution function.

I Let F̂n(f ) be the empirical distribution function.

I Let ∆n(f ) =
√
n(F̂n(f )− F (f )).

Then ∆n(·) converges to a Brownian bridge, that is, a centered continuous Gaussian
process B with covariance function E [BsBt ] = s(1− t), 0 ≤ s ≤ t ≤ 1.

Results of this type are called functional CLTs.
A lot to explain here.

I A process is an indexed set of RVs. In this case the indices are the set [0, 1].

I A Gaussian process is a processes whose finite joint distributions are multivariate
Gaussian (normal).

I A process is centered if all RVs are centered.

I The distribution of centered Gaussian processes are determined by their
covariance function.

I The limit process is known as Brownian Bridge: Standard Brownian motion
conditioned to be at 0 at time 1.



CLT for Glivenko-Cantelli

Theorem 5

I Suppose X1,X2, . . . are IID U[0, 1] and let F be the distribution function.

I Let F̂n(f ) be the empirical distribution function.

I Let ∆n(f ) =
√
n(F̂n(f )− F (f )).

Then ∆n(·) converges to a Brownian bridge, that is, a centered continuous Gaussian
process B with covariance function E [BsBt ] = s(1− t), 0 ≤ s ≤ t ≤ 1.

Results of this type are called functional CLTs.
As for the convergence:

I The mode of convergence is a topic for another discussion (weak convergence on
right-continuous processes with left limits).

I This mode guarantees convergence of joint distributions and more (e.g.
maximum, integrals)



CLT for Glivenko-Cantelli

Theorem 5

I Suppose X1,X2, . . . are IID U[0, 1] and let F be the distribution function.

I Let F̂n(f ) be the empirical distribution function.

I Let ∆n(f ) =
√
n(F̂n(f )− F (f )).

Then ∆n(·) converges to a Brownian bridge, that is, a centered continuous Gaussian
process B with covariance function E [BsBt ] = s(1− t), 0 ≤ s ≤ t ≤ 1.

Results of this type are called functional CLTs.
Here’s simulation of Brownian Bridge.
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Figure: Brownian Bridge



Back to toy our model

Here we also have a functional CLT. The expression is more involved though. Let

∆̂n = F̂n − F

Processes appearing in limit

I W1 standard BM, and the corresponding bridge Br1:

Br1(f ) := W1(f )− fW1(1).

I If fc = 0, choose W̃1 ≡ 0.

I If fc > 0 : W̃1 standard BM derived from W1 as follows :
I U ∼ U[fc , 1], independent of W1.
I An “interval” Ãt of length (1 − fc )t, shifted by U.

I W̃1(t) :=
1√

fc (1 − fc )

(
(1 − fc )W1(fc t) + fc

∫
1Ãt

(s)dW1(s)

)
.

0 1

fc t

fc U

(1 − fc )t

I W2, standard BM, independent of W1,U.
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Toy model functional CLT

For a path ω ∈ D[0, 1], let Ψ(ω) := ω(1)− inf
0≤t≤1

ω(t)

Theorem 6 (B ‘13)

√
n

(
∆̂n(·)|(fc ,1]

∆̂n(fc )

)
⇒

Gaussian process

1

p


︷ ︸︸ ︷
σ1Br1 + fcW2(1)(1− F )

Ψ(σ̃1W̃1 + fcW2)︸ ︷︷ ︸


Positive RV

,

with σ1 =
√
p, σ̃1 =

√
fc (2p − 1), and the convergence is D(fc , 1]× R.

Marginals

√
n∆̂n(f )⇒


σ(f ∧ 1)N(0, 1) f > fc ;

σ(fc )|N(0, 1)| f = fc ;

0 f < fc ,

where σ(f ) :=
1

p

√
f (1− f )p +

(
1− f

1− fc

)2

fc
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Toy model CLT Discussion

Recall
√
n

(
∆̂n(·)|(fc ,1]

∆̂n(fc )

)
⇒

1

p

(
σ1Br1 + fcW2(1)g

Ψ(σ̃1W̃1 + fcW2)

)
Origin of terms

1. Bridge arising from empirical process associated with births.
Only surviving term when fc = 0, recovering classical CLT for empirical processes.

2. Fluctuations from bridge due to randomness of births, and existence of deaths

3. Population with fitness ≤ fc is null recurrent random walk above its running
minimum, hence Ψ.
Note that it’s of order

√
n, hence only appearing in CLT.

a. Scaling limit for the births.
b. Fluctuations from randomness of births, and negative increments.

Discontinuity

I The limit process is not in D[fc , 1], because its distribution at fc is
σ(fc )|N(0, 1)| > 0 a.s., while it limit from the right is σ(fc )N(0, 1).

I The standard normal random variables above are NOT the same.
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b. Fluctuations from randomness of births, and negative increments.

Discontinuity

I The limit process is not in D[fc , 1], because its distribution at fc is
σ(fc )|N(0, 1)| > 0 a.s., while it limit from the right is σ(fc )N(0, 1).

I The standard normal random variables above are NOT the same.



Toy model CLT Discussion

Recall
√
n

(
∆̂n(·)|(fc ,1]

∆̂n(fc )

)
⇒

1

p

(
σ1Br1 + fcW2(1)g

Ψ(σ̃1W̃1 + fcW2)

)
Origin of terms

1. Bridge arising from empirical process associated with births.
Only surviving term when fc = 0, recovering classical CLT for empirical processes.

2. Fluctuations from bridge due to randomness of births, and existence of deaths

3. Population with fitness ≤ fc is null recurrent random walk above its running
minimum, hence Ψ.
Note that it’s of order

√
n, hence only appearing in CLT.

a. Scaling limit for the births.
b. Fluctuations from randomness of births, and negative increments.

Discontinuity

I The limit process is not in D[fc , 1], because its distribution at fc is
σ(fc )|N(0, 1)| > 0 a.s., while it limit from the right is σ(fc )N(0, 1).

I The standard normal random variables above are NOT the same.



Thank y ou.
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