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ABSTRACT

Characterization of existence of an efficient Markovian coupling for a finite-state

Markov chain is essentially an open problem. The goal of this research is to provide

sufficient conditions on the transition function of a discrete-time finite-state Markov

chain that guarantee nonexistence of an efficient Markovian coupling. Specifically, we

look at symmetric, three state matricies with a constant antidiagonal. We show that

an efficient Markovian coupling only exists when the matrix has a specific form.
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Introduction

Background

This research has entirely been focussed around discrete time, finite state Markov

Chains. A Markov Chain is a function of a single state and random values that

output the next state. This can be thought of as the set of probabilities of moving

from one state to any other. The key point here is that a Markov Chain only needs

to know the current state, any information about prior states are ignored in these

probabilities. The “discrete time” refers to the fact that there will be distinct steps

at which we jump to the next state, in contrast to continuous time, where the change

could happen at any moment. The “finite” or “countable” state refers to the fact

that we have a countable number of states that we can be in. Here is a diagram that

describes a Markov Chain on three states, a, b, and c.
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Markov Chains where you are able move from one state to any other state given

enough time will always have a unique stationary distribution as long as the proba-
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bility of being at a state at time t converges to a distribution as t → ∞. This is a

probability distribution over every state in your space, and is stationary in the sense

that if you apply the Markov Chain to this distribution, it remains the same. This

distribution is also what the Markov Chain will converge to on the limit. In other

words, if you start at any state and follow the Markov Chain long enough, keeping

track of how many times you’ve visited each state, the final proportion of time spent

in each state will be your stationary distribution.

Original Project

This research project was originally focussed on using the Metropolis Hastings algo-

rithm to solve NP hard optimization projects. It started after learning that stochastic

processes can be used to search a space probabilistically. This is done by doing a ran-

dom search, where we set the probability of finding “high energy” states to be more

likely.

The Metropolis Hastings algorithm allows us to find a Markov Chain that has

any given stationary distribution. We can then define a distribution such that the

probability of wanted states are higher than the probability of unwanted states. Then

you just start in an arbitrary state, and follow the given Markov Chain which will

eventually lead you to a desired state.

We tried to use this algorithm to tackle two-sided matching with couples. The

problem is usually framed in terms of hospitals and residents, each with a ranked

order of the opposite group. We want to create a stable matching between these two

groups. This is a fairly straightforward problem with an O(n2) algorithm, but when

you add the complication that some residents come in couples, so we need to ensure a
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stable matching where all couples are geographically close to each other. The addition

of couples actually makes this an NP hard problem.

Our solution attempted to frame this problem in turns of a probabilistic search on

the space of all matchings, with a higher probability given to more stable matchings.

Unfortunately, this approach was not very successful for a couple different reasons.

First, the transition between matchings was too limited, each iteration we probabilis-

tically switched the matching for two pairs, which meant we weren’t able to search

enough of the space to find stable matchings. Second, probabilistic search is excellent

for problems where there is a gradual scale of usefullness for each state. This isn’t

the case for two-sided matching, where you only care about stable matchings, not

almost stable matchings. After exploring this research for a few months we pivoted

to a different question.

Mixing Time and Coupling

How can we put a bound on how long it takes to reach a stationary distribution for

a given Markov Chain? In other words, starting from an arbitrary distribution, how

many time steps will it take to get close to the stationary distribution? To approach

this question, we need to introduce the idea of a mixing time. A mixing time is the

minimum number of steps t, after which we are within some small ε of the stationary

distribution. Formally, we define the total variation distance as dt(x, y)

dt(x, y) = max
A⊂S

(Px(Xt ∈ A)− Py(Xt ∈ A))
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Where x and y are the starting states. The mixing time is the time t such that

dt(x, y) ≤ ε.

This mixing time can be difficult to find for an arbitrary Markov Chain. To help

bound it, we will use a concept called a Markovian Coupling. This can be thought of

as two copies of the Markov Chain starting at different states. We’re going to look at

the number of time steps that go by before they land on the same state which we’ll

call the coupling time. After they meet, they move together, never separating.

A coupling has two properites that make it appealing. This first is that it is

generally easy to compute the coupling time. The second is that the coupling time

can be used as an upper bound for the mixing time of a Markov Chain.

dt(x, y) ≤ Prx,y(τcouple > t) ∀t ∈ Z+

Where equality means you have a maximal coupling.

We’ll also denote an efficient coupling as any coupling where there exists some

constant c where

Prx,y(τcouple > t) ≤ cdt(x, y) ∀t ∈ Z+

As an example, let’s say we have the following Markov Chain.
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Our coupling can be as simple as two independent copies of this Markov Chain

starting at points i and j. If we look at the probability of meeting at the next step

we have

Pr(meet) =
∑
k

p(i, k)p(j, k) =
5

16
= α

Then the probability of not meeting at time t is

Pr(not meet at t) = (1− α)t = (
11

16
)t

Thus we know dt(x, y) ≤ (11
16

)t for this Markov Chain.

There are other ways to create a coupling for this Markov Chain though, the main

method we’ll talk about is a greedy coupling. A greedy coupling is two copies of the

same randomness that try to maximize the probability of meeting in the next step.

For a greedy coupling on this chain, the probability of meeting at the next step is

Pr(meet) =
3

4
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because for any two states that you start on, the only way that you don’t meet with

the greedy coupling is if both copies remain in their states which has a probability of

1
4
. Then the probability of not meeting at time t is

Pr(not meet at t) = (0.25)t

With dt(x, y) ≤ (0.25)t, the greedy coupling gives us a tighter bound.

The greedy method of coupling can be expanded to optimize the chance of meeting

in 2 steps, which we’ll call the greedy 2-step Markovian Coupling.

Problem

The research project ended up focusing on trying to find general rules for when an

efficient Markovian coupling exists when you couple using a purely greedy method.

Specifically, we looked at reversible, 3 state Markov Chains and tried to find any

properties of these Markov Chains that meant an efficient coupling was impossible.

To do this, we first wrote a simulation that would generate random 3 state Markov

Chains, produce a greedy coupling, and then check whether or not this coupling is

efficient. This made it possible to refine the motivating examples, so we can ana-

lytically solve the general case where we couldn’t get an efficient coupling using the

greedy method.
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Results

In this section we show that for a large class of reversible 3-state chains there does

not exist an efficient Markovian coupling.

Theorem 1. Suppose that p is a symmetric transition function on three states with

constant antidiagonal. Then p has an efficient Markovian coupling if and only if

two entries in the first row of p are identical, and in this case the greedy coupling is

efficient. Otherwise, any greedy 2-step Markovian coupling is efficient.

Proof. Let a, b represent the minimal element in the first row and the maximal ele-

ment in the first row, respectively. Therefore the elements in the first row are (not

necessarily in this order of appearance), a ≤ 1 − a − b ≤ b and let c = 1 − a − b.

Without loss of generality we can imagine the format of the matrix is


a b c

b c a

c a b


By the assumption, the trace of p is equal to 1. Therefore, the eigenvalues for p are

1, λ,−λ, and the determinant of p is equal to λ2. The trace of p2 is therefore equal

to 1 + 2λ2, but by symmetry of p and since the second and the third rows are the

first row shifted, it follows that the diagonal of p2 is constant, and its trace is equal

to 3(a2 + b2 + (1− a− b)2). We therefore have

1 + 2λ2 = 3(a2 + b2 + (1− a− b)2). (1)
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Suppose (X, Y ) is a Markovian coupling for p and let τ be the coupling time. Then

Px,y(τ > t+ 1) =
∑
x′,y′

Px,y(τ > t,Xt = x′, Yt = y′, Xt+1 6= Yt+1)

=
∑
x,y

Px,y(Xt+1 6= Yt+1|τ > t,Xt = x′, Yt = y′)Px,y(τ > t,Xt = x′, Yt = y′),

(2)

where the summation is over (x′, y′) such that Px,y(τ > t,Xt = x′, Yt = y′) > 0.

Clearly,

Px,y(Xt+1 6= Yt+1|τ > t,Xt = x′, Yt = y′) = 1−
∑
`

Px,y(Xt+1 = Yt+1 = `|τ > t,Xt = x′, Yt = y′).

Conditioned on τ > t,Xt = x′, Yt = y′, the event Xt+1 = Yt+1 = ` is contained both in

events Xt+1 = ` and Yt+1 = `. By the Markov property for each component process,

the respective conditional probabilities of these events are p(x′, `) and p(y′, `), respec-

tively. Note that we do not assume (X, Y ) to be a Markov chain: we only assume

each component is a Markov chain with respect to the joint filtration. Therefore

Px,y(Xt+1 = Yt+1 = `|τ > t,Xt = x′, Yt = y′) ≤ min(p(x′, `), p(y′, `)),

with equality if we choose a greedy coupling. From this we obtain

Px,y(Xt+1 6= Yt+1|τ > t,Xt = x′, Yt = y′) ≥ 1−
∑
`

min{p(x′, `), p(y′, `)},

In our particular case, for each x′, y′ the sum on the righthand side is equal to 2a +

(1 − a − b) = a − b + 1. Therefore we have proven that Px,y(τ > t + 1|τ > t,Xt =
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x′, Yt = y′) = b− a, and plugging this equality in (2) and summing over x′, y′, and a

trivial induction then give

Px,y(τ > t+ 1) ≥ (b− a)t+1, for all t ∈ Z+, (3)

with equality if the coupling is greedy. Since by Aldous’ inequality λ ≤ b − a with

equality if and only if the coupling is efficient, it follows from (1) that

f(a, b) := 1 + 2(b− a)2 − 3(a2 + b2 + (1− a− b)2) ≥ 0,

with equality if and only if the coupling is efficient. With c = 1 − a − b, and recall

that 0 ≤ a ≤ c ≤ b. We can then simplify.

0 ≤ 1 + (2a2 + 2b2 − 4ab)− 3a2 − 3b2 − 3c2

≤ (1− (a+ b)2)− 2ab− 3c2

≤ (1− a− b)(1 + a+ b)− 2ab− 3c2

≤ c(2− 4c)− 2ab

≤ c(1− c− c)− ab

≤ −(c2 − c(a+ b) + ab)

≤ (b− c)(c− a)

Therefore f is equal to zero if and only if c = a or c = b. In this latter case the greedy

coupling gives us an efficient coupling.

It remains to show that any 2-step greedy coupling is efficient. Let r1, r2, r3 be

the first second and third rows of p, respectively, written as row vectors. Then
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p2(i, i) = r1 · r1 = a2 + b2 + c2, and since the rows are cyclic permutations, and by

Cauchy-Schwarz, it follows that p(i, j) = r1 · r2 ≤ p(i, i) for all i 6= j. Therefore

p2 =


β α α

α β α

α α β

 .

Repeating the argument leading to (3) verbatim, it follows that for any greedy cou-

pling for p2, with coupling time σ, we have

Px,y(σ > t) = (β − α)t.

To complete the proof, it is enough to show that β − α = λ2. However as the trace

of p2 is 3β and is also equal to 1 + 2λ2, we need to show 1 + 2(β − α) = 3β always

holds.

1 = 3β − 2(β − α)

1 = 3β − 2β + 2α

And this is equivalent to 2α + β = 1, which must always hold.

Conclusion

To continue this research, the next steps would be to try and generalize this to any

3 state reversible Markov Chain. In addition, any generalizations to all 3 state or

greater Markov Chains would push the boundary of knowledge in the field.

The general process of sampling random Markov Chains, and computing a cou-
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pling could allow for further insight into questions of existence of efficient couplings

for matrices that do not follow the criteria explored in this paper.


