Random Walk with Catastrophes

Iddo Ben-Ari, University of Connecticut ${ }^{1}$

WPSM, Sao Carlos 2020-Feb-13

[^0]
Outline

1. Introduction.
2. Convergence to stationarity.
3. Upper and lower bounds on convergence.
4. Poisson limit.
5. Cutoff.

Introduction

Why?

- Simplest model involving linear random growth and subcritical branching.
- Interesting behavior initially observed in through simulations (all credit to Rinaldo).

Process

$\mathbf{X}=\left(X_{n}: n \in \mathbb{Z}_{+}\right)$, a MC with state space $\mathbb{Z}_{+}=\{0,1,2 \ldots\}$, representing size of a population evolving in time.

Starting from population of size i

- w.p. p, population increases by 1 ; and
- w.p. $1-p$, a binomial catastrophe: each member of population dies with probability c independently of everything, that is transition to $\operatorname{Bin}(i, 1-c)$.

$$
\operatorname{Bin}(i, 1-c) \stackrel{1-p}{\longleftarrow} i \xrightarrow{p} i+1
$$

Formula?

$$
p(i, j)= \begin{cases}p & j=i+1 \\ (1-p)\binom{i}{j}(1-c)^{j} c^{i-j} & j \in\{0, \ldots, i\}\end{cases}
$$

First Calculation

$$
\begin{aligned}
E_{i}\left[X_{t+1} \mid X_{0}, \ldots, X_{t}\right] & =p\left(X_{t}+1\right)+(1-p)(1-c) X_{t} \\
& =X_{t}+p-(1-p) c X_{t} \\
& =X_{t}+p\left(1-\frac{(1-p) c}{p} X_{t}\right) \\
& \cdots \Rightarrow \lim _{t \rightarrow \infty} E_{i}\left[X_{t}\right]=\frac{p}{(1-p) c}
\end{aligned}
$$

In particular:

- The distributions of $\left\{X_{t}: t \in \mathbb{Z}_{+}\right\}$are tight, and so
- The process is positive recurrent and "mean reverting" around $\mu=\frac{p}{(1-p) c}$.

Simulation

Simulation: $p=0.6, c=0.1, X_{0}=1$

Simulation: Empirical distribution

Note:

- The process seems to be nearly stationary oscillating around $\mu=\frac{p}{c(1-p)}=15$, black line.
- The process does not hit 0 at all.

Why?

- The stationary distribution assigns a probability lower than $3 * 10^{-5}$ to 0 .
- Process converges to its stationarity distribution very fast. In less than 300 steps it is closer to π than that.
- Bottom line: the $O(1)$ probability of hitting 0 from "low" populations quickly changes to o(1) from "typical" populations.

The Stationary distribution

Shifted Geometric

We say that $G \sim \operatorname{Geom}^{-}(\rho)$ if

$$
P(G=g)=(1-\rho)^{g} \rho, g=0,1,2, \ldots
$$

Observation: $G \sim \operatorname{Geom}^{-}(\rho)$ and $I \sim \operatorname{Ber}(1-\rho)$ independent. Then $I(G+1) \sim G$.

Idea

- Suppose the number of individuals not experiencing a catastrophe yet is G_{0}.
- After one step this number will be $I\left(G_{0}+1\right)$, where is an independent $I \sim \operatorname{Bern}(p)$.
- Due to observation: stationary if $G \sim \operatorname{Geom}^{-}(1-p)$.

Summary

Let G_{0}, G_{1}, \ldots be IID $\sim \operatorname{Geom}^{-}(1-p)$. The stationary distribution π is the independent sum of

- G_{0} individuals who have not experienced a single catastrophe.
- $\operatorname{Bin}\left(G_{1}, 1-c\right)$ - survived exactly one catastrophe
- $\operatorname{Bin}\left(G_{2},(1-c)^{2}\right)$ - survived exactly two catastrophes.

Convergence

Total Variation

- The total variation metric between probability measures Q_{1}, Q_{2} on \mathbb{Z}_{+}is defined as

$$
\left\|Q_{1}-Q_{2}\right\|_{T V}=\max _{A \subset \mathbb{Z}_{+}} Q_{1}(A)-Q_{2}(A)=\frac{1}{2} \sum_{x \in \mathbb{Z}_{+}}\left|Q_{1}(x)-Q_{2}(x)\right|
$$

- Write:

$$
d_{t}\left(\mu, \mu^{\prime}\right)=\left\|P_{\mu}\left(X_{t} \in \cdot\right)-P_{\mu^{\prime}}\left(X_{t} \in \cdot\right)\right\|_{T V} .
$$

Coupling

- A process ($\mathbf{X}, \mathbf{X}^{\prime}$) consisting of two copies of the RW with initial distributions μ, μ^{\prime}, resp.
- The coupling time, $\tau_{\text {coup }}=\inf \left\{t: X_{t}=X_{t}^{\prime}\right\}$.
- Write $P_{\mu, \mu^{\prime}}$ for the law of ($\mathbf{X}, \mathbf{X}^{\prime}$).

Aldous Inequality

$$
d_{t}\left(\mu, \mu^{\prime}\right) \leq P_{\mu, \mu^{\prime}}\left(\tau_{c o u p}>t\right)
$$

Our Coupling

The construction

- We assume $\mu=\delta_{x}, \mu^{\prime}=\delta_{x^{\prime}}$ with $0 \leq x \leq x^{\prime}$.
- Simplest possible:
- Up: together.
- Catastrophe: all individuals survive independently.
- Transitions

$$
\operatorname{Bin}(i, 1-c)+\left(0, \operatorname{Bin}\left(i^{\prime}-i, 1-c\right)\right) \stackrel{1-p}{\longleftarrow}\left(i, i^{\prime}\right) \xrightarrow{p}\left(i+1, i^{\prime}+1\right)
$$

Our Coupling

The construction

- We assume $\mu=\delta_{x}, \mu^{\prime}=\delta_{x^{\prime}}$ with $0 \leq x \leq x^{\prime}$.
- Simplest possible:
- Up: together.
- Catastrophe: all individuals survive independently.
- Transitions

$$
\operatorname{Bin}(i, 1-c)+\left(0, \operatorname{Bin}\left(i^{\prime}-i, 1-c\right)\right) \stackrel{1-p}{\longleftarrow}\left(i, i^{\prime}\right) \xrightarrow{p}\left(i+1, i^{\prime}+1\right)
$$

Summary

- The difference $\Delta_{t}=X_{t}^{\prime}-X_{t}$ is non-increasing and can only change after a catastrophe, each surviving with probability $1-c$, independently of others.

Our Coupling

The construction

- We assume $\mu=\delta_{x}, \mu^{\prime}=\delta_{x^{\prime}}$ with $0 \leq x \leq x^{\prime}$.
- Simplest possible:
- Up: together.
- Catastrophe: all individuals survive independently.
- Transitions

$$
\operatorname{Bin}(i, 1-c)+\left(0, \operatorname{Bin}\left(i^{\prime}-i, 1-c\right)\right) \stackrel{1-p}{\longleftarrow}\left(i, i^{\prime}\right) \xrightarrow{p}\left(i+1, i^{\prime}+1\right)
$$

Summary

- The difference $\Delta_{t}=X_{t}^{\prime}-X_{t}$ is non-increasing and can only change after a catastrophe, each surviving with probability $1-c$, independently of others.
- The number of catastrophes up to time $t, N_{t} \sim \operatorname{Bin}(t, 1-p)$.

Our Coupling

The construction

- We assume $\mu=\delta_{x}, \mu^{\prime}=\delta_{x^{\prime}}$ with $0 \leq x \leq x^{\prime}$.
- Simplest possible:
- Up: together.
- Catastrophe: all individuals survive independently.
- Transitions

$$
\operatorname{Bin}(i, 1-c)+\left(0, \operatorname{Bin}\left(i^{\prime}-i, 1-c\right)\right) \stackrel{1-p}{\longleftarrow}\left(i, i^{\prime}\right) \xrightarrow{p}\left(i+1, i^{\prime}+1\right)
$$

Summary

- The difference $\Delta_{t}=X_{t}^{\prime}-X_{t}$ is non-increasing and can only change after a catastrophe, each surviving with probability $1-c$, independently of others.
- The number of catastrophes up to time $t, N_{t} \sim \operatorname{Bin}(t, 1-p)$.
- $P_{x, x^{\prime}}\left(\Delta_{t} \in \cdot \mid N_{t}\right) \sim \operatorname{Bin}\left(x^{\prime}-x,(1-c)^{N_{t}}\right)$.

Our Coupling

The construction

- We assume $\mu=\delta_{x}, \mu^{\prime}=\delta_{x^{\prime}}$ with $0 \leq x \leq x^{\prime}$.
- Simplest possible:
- Up: together.
- Catastrophe: all individuals survive independently.
- Transitions

$$
\operatorname{Bin}(i, 1-c)+\left(0, \operatorname{Bin}\left(i^{\prime}-i, 1-c\right)\right) \stackrel{1-p}{\longleftarrow}\left(i, i^{\prime}\right) \xrightarrow{p}\left(i+1, i^{\prime}+1\right)
$$

Summary

- The difference $\Delta_{t}=X_{t}^{\prime}-X_{t}$ is non-increasing and can only change after a catastrophe, each surviving with probability $1-c$, independently of others.
- The number of catastrophes up to time $t, N_{t} \sim \operatorname{Bin}(t, 1-p)$.
- $P_{x, x^{\prime}}\left(\Delta_{t} \in \cdot \mid N_{t}\right) \sim \operatorname{Bin}\left(x^{\prime}-x,(1-c)^{N_{t}}\right)$.
- $\left\{\tau_{\text {coup }}>t\right\}=\left\{\Delta_{t}>0\right\}=\left\{\operatorname{Bin}\left(x^{\prime}-x,(1-c)^{N_{t}}\right)>0\right\}$.

Our Coupling

The construction

- We assume $\mu=\delta_{x}, \mu^{\prime}=\delta_{x^{\prime}}$ with $0 \leq x \leq x^{\prime}$.
- Simplest possible:
- Up: together.
- Catastrophe: all individuals survive independently.
- Transitions

$$
\operatorname{Bin}(i, 1-c)+\left(0, \operatorname{Bin}\left(i^{\prime}-i, 1-c\right)\right) \stackrel{1-p}{\longleftarrow}\left(i, i^{\prime}\right) \xrightarrow{p}\left(i+1, i^{\prime}+1\right)
$$

Summary

- The difference $\Delta_{t}=X_{t}^{\prime}-X_{t}$ is non-increasing and can only change after a catastrophe, each surviving with probability $1-c$, independently of others.
- The number of catastrophes up to time $t, N_{t} \sim \operatorname{Bin}(t, 1-p)$.
- $P_{x, x^{\prime}}\left(\Delta_{t} \in \cdot \mid N_{t}\right) \sim \operatorname{Bin}\left(x^{\prime}-x,(1-c)^{N_{t}}\right)$.
- $\left\{\tau_{\text {coup }}>t\right\}=\left\{\Delta_{t}>0\right\}=\left\{\operatorname{Bin}\left(x^{\prime}-x,(1-c)^{N_{t}}\right)>0\right\}$.
$\Rightarrow \Rightarrow P_{x, x^{\prime}}\left(\tau_{\text {coup }}>t\right)=1-E\left[\left(1-(1-c)^{N_{t}}\right)^{x^{\prime}-x}\right]$

Upper bound through coupling
Recall,

$$
d_{t}\left(x, x^{\prime}\right) \leq P_{x, x^{\prime}}\left(\tau_{\text {coup }}>t\right)=1-E\left[\left(1-(1-c)^{N_{t}}\right)^{x^{\prime}-x}\right] .
$$

Let

$$
\alpha=1-c(1-p) .
$$

Upper bound
With some calculus,

Proposition 1

Suppose $0 \leq x \leq x^{\prime}$. Then

$$
d_{t}\left(x, x^{\prime}\right) \leq\left(x^{\prime}-x\right) \alpha^{t}
$$

and
Corollary 1

1. $d_{t}(x, \pi) \leq\left(x-\mu+2 \sum_{y>x}(y-x) \pi(y)\right) \alpha^{t}$; and
2. $d_{t}(0, \pi) \leq \mu \alpha^{t}$

Lower Bound

Notation

- Recall $\alpha=1-c(1-p)$
- Let $\tilde{p}=\frac{p}{\alpha}=\frac{p}{1-c(1-p)}$.
- Write $P^{\tilde{p}}, \pi^{\tilde{p}}$, for the respective quantities with parameters (\tilde{p}, c) instead of (p, c).

The bound

- From Proposition 1, $d_{t}\left(x, x^{\prime}\right) \leq\left(x^{\prime}-x\right) \alpha^{t}$.

Theorem 1
Let $0 \leq x \leq x^{\prime}$. Then

$$
d_{t}\left(x, x^{\prime}\right) \geq \alpha^{t} \max _{j \in \mathbb{Z}_{+}} \sum_{k=x}^{x^{\prime}-1} P_{k}^{\tilde{P}}\left(X_{t}=j\right)
$$

Upper and lower bounds give
Corollary 2

$$
\max _{j} \pi^{\tilde{P}}(j) \leq \liminf _{t \rightarrow \infty} \frac{d_{t}\left(x, x^{\prime}\right)}{\left(x^{\prime}-x\right) \alpha^{t}} \leq \limsup _{t \rightarrow \infty} \frac{d_{t}\left(x, x^{\prime}\right)}{\left(x^{\prime}-x\right) \alpha^{t}} \leq 1
$$

Lower bound - Strategy

Goal

$$
\begin{equation*}
d_{t}\left(x, x^{\prime}\right) \geq \alpha^{t} \max _{j \in \mathbb{Z}_{+}} \sum_{k=x}^{x^{\prime}-1} P_{k}^{\tilde{p}}\left(X_{t}=j\right) . \tag{1}
\end{equation*}
$$

Stages

Here's our plan
I. Getting the sum.
II. Getting the change of parameter.

Write $I_{j}=\{0, \ldots, j\}, j \in \mathbb{Z}_{+}$. Then

$$
d_{t}\left(x, x^{\prime}\right) \geq P_{x}\left(X_{t} \in I_{j}\right)-P_{x^{\prime}}\left(X_{t} \in I_{j}\right)
$$

Explanation

From definition of total variation, $d_{t}\left(x, x^{\prime}\right)=\max _{A \subset \mathbb{Z}_{+}} P_{x}\left(X_{t} \in A\right)-P_{x^{\prime}}\left(X_{t} \in A\right)$

Write $I_{j}=\{0, \ldots, j\}, j \in \mathbb{Z}_{+}$. Then

$$
\begin{aligned}
d_{t}\left(x, x^{\prime}\right) & \geq P_{x}\left(X_{t} \in I_{j}\right)-P_{x^{\prime}}\left(X_{t} \in I_{j}\right) \\
& =\sum_{k=x}^{x^{\prime}-1} P_{k}\left(X_{t} \in I_{j}\right)-P_{k+1}\left(X_{t} \in I_{j}\right)
\end{aligned}
$$

Explanation

Telescoping over all k from x to x^{\prime}

Write $I_{j}=\{0, \ldots, j\}, j \in \mathbb{Z}_{+}$. Then

$$
\begin{aligned}
d_{t}\left(x, x^{\prime}\right) & \geq P_{x}\left(X_{t} \in I_{j}\right)-P_{x^{\prime}}\left(X_{t} \in I_{j}\right) \\
& =\sum_{k=x}^{x^{\prime}-1} \underbrace{P_{k}\left(X_{t} \in I_{j}\right)}_{(*)}-\underbrace{P_{k+1}\left(X_{t} \in I_{j}\right)}_{(* *)} \\
& =\sum_{k=x}^{x^{\prime}-1} E_{k, k+1}[\underbrace{\mathbf{1}_{l_{j}}\left(X_{t}\right)}_{(*)}-\underbrace{\left.\mathbf{1}_{l_{j}}\left(X_{t}^{\prime}\right)\right]}_{(* *)}
\end{aligned}
$$

Explanation

Expressing in terms of our coupling

Write $I_{j}=\{0, \ldots, j\}, j \in \mathbb{Z}_{+}$. Then

$$
\begin{aligned}
d_{t}\left(x, x^{\prime}\right) & \geq P_{x}\left(X_{t} \in I_{j}\right)-P_{x^{\prime}}\left(X_{t} \in I_{j}\right) \\
& =\sum_{k=x}^{x^{\prime}-1} P_{k}\left(X_{t} \in I_{j}\right)-P_{k+1}\left(X_{t} \in I_{j}\right) \\
& =\sum_{k=x}^{x^{\prime}-1} E_{k, k+1}\left[\mathbf{1}_{l_{j}}\left(X_{t}\right)-\mathbf{1}_{l_{j}}\left(X_{t}^{\prime}\right)\right] \\
& =\sum_{k=x}^{x^{\prime}-1} E_{k, k+1}\left[\mathbf{1}_{l_{j}}\left(X_{t}\right)-\mathbf{1}_{l_{j}}\left(X_{t}^{\prime}\right), \Delta_{t}=1\right]
\end{aligned}
$$

Explanation

$\Delta_{t} \in\{0,1\}$, and the indicators are equal on $\left\{\Delta_{t}=0\right\}$

Write $I_{j}=\{0, \ldots, j\}, j \in \mathbb{Z}_{+}$. Then

$$
\begin{aligned}
d_{t}\left(x, x^{\prime}\right) & \geq P_{x}\left(X_{t} \in I_{j}\right)-P_{x^{\prime}}\left(X_{t} \in I_{j}\right) \\
& =\sum_{k=x}^{x^{\prime}-1} P_{k}\left(X_{t} \in I_{j}\right)-P_{k+1}\left(X_{t} \in I_{j}\right) \\
& =\sum_{k=x}^{x^{\prime}-1} E_{k, k+1}\left[\mathbf{1}_{l_{j}}\left(X_{t}\right)-\mathbf{1}_{l_{j}}\left(X_{t}^{\prime}\right)\right] \\
& =\sum_{k=x}^{x^{\prime}-1} E_{k, k+1}\left[\mathbf{1}_{l_{j}}\left(X_{t}\right)-\mathbf{1}_{l_{j}}\left(X_{t}^{\prime}\right), \Delta_{t}=1\right]
\end{aligned}
$$

Continued on next slide...

Lower bound - I. Sum, continued

We showed

$$
d_{t}\left(x, x^{\prime}\right) \geq \sum_{k=x}^{x^{\prime}-1} E_{k, k+1}\left[\mathbf{1}_{l_{j}}\left(X_{t}\right)-\mathbf{1}_{l_{j}}\left(X_{t}^{\prime}\right), \Delta_{t}=1\right]
$$

Lower bound - I. Sum, continued

We showed

$$
\begin{aligned}
d_{t}\left(x, x^{\prime}\right) & \geq \sum_{k=x}^{x^{\prime}-1} E_{k, k+1}\left[\mathbf{1}_{l_{j}}\left(X_{t}\right)-\mathbf{1}_{l_{j}}\left(X_{t}^{\prime}\right), \Delta_{t}=1\right] \\
& =\sum_{k=x}^{x^{\prime}-1}-P_{k, k+1}\left(X_{t}^{\prime}=0, \Delta_{t}=1\right)+P_{k, k+1}\left(X_{t}^{\prime}=j+1, \Delta_{t}=1\right)
\end{aligned}
$$

Explanation

On $\left\{\Delta_{t}=1\right\}$, black - solid blue $=$ dashed blue - solid blue

Lower bound - I. Sum, continued

We showed

$$
\begin{aligned}
d_{t}\left(x, x^{\prime}\right) & \geq \sum_{k=x}^{x^{\prime}-1} E_{k, k+1}\left[\mathbf{1}_{l_{j}}\left(X_{t}\right)-\mathbf{1}_{l_{j}}\left(X_{t}^{\prime}\right), \Delta_{t}=1\right] \\
& =\sum_{k=x}^{x^{\prime}-1} \underbrace{-P_{k, k+1}\left(X_{t}^{\prime}=0, \Delta_{t}=1\right)}_{(*)}+\underbrace{P_{k, k+1}\left(X_{t}^{\prime}=j+1, \Delta_{t}=1\right)}_{(* *)} \\
& =0+\sum_{k=x}^{x^{\prime}-1} \underbrace{P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1\right)}_{(* *)}
\end{aligned}
$$

Explanation
On $\left\{\Delta_{t}=1\right\}, X_{t}^{\prime}=X_{t}+1>0$.

Lower bound - I. Sum, continued

We showed

$$
\begin{aligned}
d_{t}\left(x, x^{\prime}\right) & \geq \sum_{k=x}^{x^{\prime}-1} E_{k, k+1}\left[\mathbf{1}_{l_{j}}\left(X_{t}\right)-\mathbf{1}_{l_{j}}\left(X_{t}^{\prime}\right), \Delta_{t}=1\right] \\
& =\sum_{k=x}^{x^{\prime}-1}-P_{k, k+1}\left(X_{t}^{\prime}=0, \Delta_{t}=1\right)+P_{k, k+1}\left(X_{t}^{\prime}=j+1, \Delta_{t}=1\right) \\
& =0+\sum_{k=x}^{x^{\prime}-1} P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1\right)
\end{aligned}
$$

Lower bound - I. Sum, continued

Lower bound - I. Sum, conclusion
Lemma 2
Suppose $0 \leq x<x^{\prime}$.

$$
\begin{equation*}
d_{t}\left(x, x^{\prime}\right) \geq \max _{j \in \mathbb{Z}_{+}} \sum_{k=x}^{x^{\prime}-1} P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1\right) . \tag{2}
\end{equation*}
$$

Note:

- Coupling (normally used for upper bound) is part of statement through Δ_{t}.
- Argument works for any $M C$ on \mathbb{Z}_{+}and coupling with $1=\Delta_{0} \geq \Delta_{1} \geq \ldots$.

Lower Bound - II. Parameter change, reminder

- Last lemma

$$
d_{t}\left(x, x^{\prime}\right) \geq \max _{j \in \mathbb{Z}_{+}} \sum_{k=x}^{x^{\prime}-1} P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1\right)
$$

Lower Bound - II. Parameter change, reminder

- Last lemma
- Will show parameter change

$$
d_{t}\left(x, x^{\prime}\right) \geq \max _{j \in \mathbb{Z}_{+}} \sum_{k=x}^{x^{\prime}-1} \frac{P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1\right)}{}
$$

$$
\alpha^{t} P_{k}^{\tilde{P}}\left(X_{t}=j\right)
$$

Lower Bound - II. Parameter change, reminder

- Last lemma
- Will show parameter change
- \Rightarrow proof of Theorem 1 is \square

$$
d_{t}\left(x, x^{\prime}\right) \geq \max _{j \in \mathbb{Z}_{+}} \sum_{k=x}^{x^{\prime}-1} P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1\right)
$$

$$
\alpha^{t} P_{k}^{\tilde{P}}\left(X_{t}=j\right)
$$

Lower Bound - II. Parameter change, reminder

- Last lemma
- Will show parameter change
- \Rightarrow proof of Theorem 1 is \square

$$
d_{t}\left(x, x^{\prime}\right) \geq \max _{j \in \mathbb{Z}_{+}} \sum_{k=x}^{x^{\prime}-1} P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1\right)
$$

$$
\alpha^{t} P_{k}^{\tilde{P}}\left(X_{t}=j\right)
$$

Time to derive...

Lower bound - II. Parameter change

- Condition on N_{t}, number of catastrohes up to time t :

$$
\begin{align*}
P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1 \mid N_{t}=n\right) & =P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right) P_{k, k+1}\left(\Delta_{t}=1 \mid N_{t}=n\right) \\
& =P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right)(1-c)^{n} \tag{3}
\end{align*}
$$

Because, conditioned on N_{t}

- X_{t} and Δ_{t} are independent, and
- $\left(\Delta_{t} \mid N_{t}=n\right) \sim \operatorname{Bern}(1-c)^{n}$.

Lower bound - II. Parameter change

- Condition on N_{t}, number of catastrohes up to time t :

$$
\begin{align*}
P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1 \mid N_{t}=n\right) & =P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right) P_{k, k+1}\left(\Delta_{t}=1 \mid N_{t}=n\right) \\
& =P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right)(1-c)^{n} \tag{3}
\end{align*}
$$

- Multiply by $P\left(N_{t}=n\right)$:

$$
\begin{equation*}
P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1, N_{t}=n\right) \stackrel{(3)}{=} P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right)(1-c)^{n} P\left(N_{t}=n\right) \tag{4}
\end{equation*}
$$

Lower bound - II. Parameter change

- Condition on N_{t}, number of catastrohes up to time t :

$$
\begin{align*}
P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1 \mid N_{t}=n\right) & =P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right) P_{k, k+1}\left(\Delta_{t}=1 \mid N_{t}=n\right) \\
& =P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right)(1-c)^{n} \tag{3}
\end{align*}
$$

- Multiply by $P\left(N_{t}=n\right)$:

$$
\begin{equation*}
P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1, N_{t}=n\right) \stackrel{(3)}{=} P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right)(1-c)^{n} P\left(N_{t}=n\right) \tag{4}
\end{equation*}
$$

- Change parameter:

$$
\begin{equation*}
(1-c)^{n} P\left(N_{t}=n\right)=\alpha^{t} P(\operatorname{Bin}(t, \tilde{p})=n)=\alpha^{t} P^{\tilde{p}}\left(N_{t}=n\right) \tag{5}
\end{equation*}
$$

Because change of measure formula from binomial with success parameter p to \tilde{p}

Lower bound - II. Parameter change

- Condition on N_{t}, number of catastrohes up to time t :

$$
\begin{align*}
P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1 \mid N_{t}=n\right) & =P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right) P_{k, k+1}\left(\Delta_{t}=1 \mid N_{t}=n\right) \\
& =P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right)(1-c)^{n} \tag{3}
\end{align*}
$$

- Multiply by $P\left(N_{t}=n\right)$:

$$
\begin{equation*}
P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1, N_{t}=n\right) \stackrel{(3)}{=} P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right)(1-c)^{n} P\left(N_{t}=n\right) \tag{4}
\end{equation*}
$$

- Change parameter:

$$
\begin{equation*}
(1-c)^{n} P\left(N_{t}=n\right)=\alpha^{t} P(\operatorname{Bin}(t, \tilde{p})=n)=\alpha^{t} P^{\tilde{P}}\left(N_{t}=n\right) \tag{5}
\end{equation*}
$$

- Putting it all together

$$
\begin{aligned}
P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1\right) & =\sum_{n \in \mathbb{Z}_{+}} P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1, N_{t}=n\right) \\
& \stackrel{(4)(5)}{=} \sum_{n \in \mathbb{Z}_{+}} P_{k}\left(X_{t}=j \mid N_{t}=n\right) \alpha^{t} P^{\tilde{P}}\left(N_{t}=n\right) \\
& =\alpha^{t} P_{k}^{\tilde{P}}\left(X_{t}=j\right)
\end{aligned}
$$

Recause the distribution of $\left(X_{+} \mid N_{t}\right)$ is indenendent of the narameter n

Lower bound - II. Parameter change

- Condition on N_{t}, number of catastrohes up to time t :

$$
\begin{align*}
P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1 \mid N_{t}=n\right) & =P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right) P_{k, k+1}\left(\Delta_{t}=1 \mid N_{t}=n\right) \\
& =P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right)(1-c)^{n} \tag{3}
\end{align*}
$$

- Multiply by $P\left(N_{t}=n\right)$:

$$
\begin{equation*}
P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1, N_{t}=n\right) \stackrel{(3)}{=} P_{k, k+1}\left(X_{t}=j \mid N_{t}=n\right)(1-c)^{n} P\left(N_{t}=n\right) \tag{4}
\end{equation*}
$$

- Change parameter:

$$
\begin{equation*}
(1-c)^{n} P\left(N_{t}=n\right)=\alpha^{t} P(\operatorname{Bin}(t, \tilde{p})=n)=\alpha^{t} P^{\tilde{p}}\left(N_{t}=n\right) . \tag{5}
\end{equation*}
$$

- Putting it all together

$$
P_{k, k+1}\left(X_{t}=j, \Delta_{t}=1\right)=\alpha^{t} P_{k}^{\tilde{P}}\left(X_{t}=j\right)
$$

Poisson Limit

Assumption

$$
\left\{\begin{array}{l}
p_{n} \rightarrow 0 \\
\frac{p_{n}}{c_{n}} \rightarrow \beta \in(0, \infty)
\end{array}\right.
$$

In the sequel, we write $P^{(n)}, \pi^{(n)}, d^{(n)}(\cdot, \cdot)$ for the respective quantities.

Limit Process

Theorem 3
Assume (\star). Then the family of rescaled processes $Y_{s}^{(n)}=X_{\left\lfloor s / c_{n}\right\rfloor}, s \in \mathbb{R}_{+}$, converges in distribution to a continuous-time Markov chain on \mathbb{Z}_{+}with rates:

$$
\lambda(x, y)= \begin{cases}\beta & y=x+1 \\ x & x>0, y=x-1 \\ 0 & \text { otherwise }\end{cases}
$$

Corollary 3
Under (\star),

$$
\pi^{(n)} \rightarrow \operatorname{Pois}(\beta)
$$

the stationary distribution of the limit chain.

Cutoff

What is cutoff?

We say that the family of TFs and initial distributions μ_{n} exhibits a cutoff at t_{n} with window w_{n} if there exists a sequence $t_{n} \rightarrow \infty$ and $w_{n}=o\left(t_{n}\right)$ such that for $\alpha>0$,
$-d_{t_{n}-\alpha w_{n}}^{(n)}\left(\mu_{n}, \pi^{(n)}\right) \rightarrow 1$.
$-d_{t_{n}+\alpha w_{n}}^{(n)}\left(\mu_{n}, \pi^{(n)}\right) \rightarrow 0$.
A sharp transition from being "orthogonal" to stationary distribution to being stationary.

Cutoff

Examples for Cutoff

Usually families of finite-state reversible chains.

- Lazy RW on the n-dimensional hypercube.
- RWs on $\{0, \ldots, n\}$ with constant drift to the right.

More? Slides by David Levin https://pages.uoregon.edu/dlevin/TALKS/durham.pdf

Our cutoff results

Recall (\star): $p_{n} \rightarrow 0$ and $p_{n} / c_{n} \rightarrow \beta$, so $\pi^{(n)} \rightarrow \operatorname{Pois}(\beta)$.
Theorem 4
Suppose that $y_{n} \rightarrow \infty$. Let $t_{n}=\frac{\ln y_{n}}{c_{n}}$. Then for every $\epsilon>0$,

1. $\lim _{n \rightarrow \infty} \inf _{t<t_{n}-b_{n}} d_{t}^{(n)}\left(y_{n}, \pi^{(n)}\right)=1$, where

$$
b_{n}=(1+\epsilon)\left(\frac{1}{2} \ln y_{n}+\frac{\ln \ln y_{n}}{c_{n}}\right) .
$$

2. $\lim _{\epsilon \rightarrow 0+} \limsup _{n \rightarrow \infty} \sup _{t>t_{n}+\frac{1}{\epsilon c_{n}}} d_{t}^{(n)}\left(y_{n}, \pi^{(n)}\right)=0$.

In other words, a cutoff at time $t_{n}=\ln y_{n} / c_{n}$ with window $O\left(\max \left(\ln y_{n}, \frac{\ln \ln y_{n}}{c_{n}}\right)\right)$.
Why $y_{n} \rightarrow \infty$?
Otherwise, $d_{0}\left(y_{n}, \pi^{(n)}\right)=\left\|\delta_{y_{n}}-\pi^{(n)}\right\|_{T V}$ is uniformly <1, so part 1 cannot hold true.

Fim. Obrigado!

[^0]: ${ }^{1}$ based on joint work with R. Schinazi and A. Roitershtein

