A survey of fitness-based models for biological evolution

Iddo Ben-Ari, University of Connecticut
U of Rochester, February 2018

Introduction

Toy models for time evolution of a system consisting of a population "species".

Common features

- Population is asymptotically large.
- Fitness-based models:

What is the asymptotic fitness distribution ?

The Models

- Bak Sneppen model ('93)
- A model presented by Guiol Machado and Schinazi ('11)
- Variations of the above.

Introduction

Toy models for time evolution of a system consisting of a population "species".
Common features

- Population is asymptotically large.
- Fitness-based models:

What is the asymptotic fitness distribution ?

The Models

- Bak Sneppen model ('93)
- A model presented by Guiol Machado and Schinazi ('11)
- Variations of the above.

Introduction

Toy models for time evolution of a system consisting of a population "species".

Common features

- Population is asymptotically large.
- Fitness-based models:

What is the asymptotic fitness distribution ?

The Models

- Bak Sneppen model ('93)
- A model presented by Guiol Machado and Schinazi ('11)
- Variations of the above.

Introduction

Toy models for time evolution of a system consisting of a population "species".

Common features

- Population is asymptotically large.
- Fitness-based models:
* "At birth" each species is assigned a random "fitness" independent of past.
- Time evolution eliminates species with lowest fitness from the system

What is the asymntotic fitness distribution ?

The Models

- Bak Sneppen model ('93)
- A model presented by Guiol Machado and Schinazi ('11)
- Variations of the above.

Introduction

Toy models for time evolution of a system consisting of a population "species".

Common features

- Population is asymptotically large.
- Fitness-based models:
- "At birth" each species is assigned a random "fitness" independent of past.

What is the asymptotic fitness distribution ?

The Models

- Bak Sneppen model ('93)
- A model presented by Guiol Machado and Schinazi ('11)
- Variations of the above.

Introduction

Toy models for time evolution of a system consisting of a population "species".

Common features

- Population is asymptotically large.
- Fitness-based models:
- "At birth" each species is assigned a random "fitness" independent of past.
- Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?
The Models

- Bak-Sneppen model ('93)
- A model presented by Guiol Machado and Schinazi ('11)
- Variations of the above.

Introduction

Toy models for time evolution of a system consisting of a population of "species".
Common features

- Population is asymptotically large.
- Fitness-based models:
- "At birth" each species is assigned a random "fitness" independent of past.
- Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?
The Models

- Bak-Sneppen model ('93)
- A model presented by Guiol Machado and Schinazi ('11)
- Variations of the above.

Introduction

Toy models for time evolution of a system consisting of a population of "species".
Common features

- Population is asymptotically large.
- Fitness-based models:
- "At birth" each species is assigned a random "fitness" independent of past.
- Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?

The Models

- Bak-Sneppen model ('93)
- A model presented by Guiol Machado and Schinazi ('11)
- Variations of the above.

Introduction

Toy models for time evolution of a system consisting of a population of "species".
Common features

- Population is asymptotically large.
- Fitness-based models:
- "At birth" each species is assigned a random "fitness" independent of past.
- Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?
The Models

- Bak-Sneppen model ('93)
- A model presented by Guiol Machado and Schinazi ('11)
- Variations of the above.

Introduction

Toy models for time evolution of a system consisting of a population of "species".
Common features

- Population is asymptotically large.
- Fitness-based models:
- "At birth" each species is assigned a random "fitness" independent of past.
- Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?
The Models

- Bak-Sneppen model ('93)
- A model presented by Guiol Machado and Schinazi ('11)
- Variations of the above.

Introduction

Toy models for time evolution of a system consisting of a population of "species".
Common features

- Population is asymptotically large.
- Fitness-based models:
- "At birth" each species is assigned a random "fitness" independent of past.
- Time evolution eliminates species with lowest fitness from the system.

What is the asymptotic fitness distribution ?
The Models

- Bak-Sneppen model ('93)
- A model presented by Guiol Machado and Schinazi ('11)
- Variations of the above.

Bak Sneppen

Bak Sneppen

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- N species arranged on the vertices of a cycle (or any finite connected graph)
- Each is a assigned an initial fitness, IID U[0, 1].
- Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with IID $\cup[0,1]$ fitnesses.

Simulations suggest

$$
\pi_{N} \underset{N \rightarrow \infty}{\rightarrow} \operatorname{IID} \cup\left[p_{c}, 1\right], \text { where } p_{c} \sim 2 / 3
$$

and π_{N} is the stationary distribution.
Open.

Bak Sneppen

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID U[0, 1].
- Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with IID $\mathrm{U}[0,1]$ fitnesses.

Simulations suggest

$$
\left.\pi_{N} \underset{N \rightarrow \infty}{\rightarrow} \text { IID U[} p_{c}, 1\right] \text {, where } p_{c} \sim 2 / 3,
$$

and π_{N} is the stationary distribution.
Open.

Bak Sneppen

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID U[0, 1].
- Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with IID U[0, 1] fitnesses.

Simulations suggest

$$
\pi_{N} \underset{N \rightarrow \infty}{\rightarrow} \text { IID U }\left[p_{c}, 1\right], \text { where } p_{c} \sim 2 / 3,
$$

and π_{N} is the stationary distribution.

Bak Sneppen

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID U[0, 1].
- Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with IID $\mathrm{U}[0,1]$ fitnesses.

Simulations suggest
$\pi_{N} \underset{N \rightarrow \infty}{\rightarrow}$ IID U $\left[p_{c}, 1\right]$, where $p_{c} \sim 2 / 3$,
and π_{N} is the stationary distribution.

Bak Sneppen

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID U[0, 1].
- Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with IID $U[0,1]$ fitnesses.

Watch simulation

Simulations suggest
$\pi_{N} \underset{N \rightarrow \infty}{\rightarrow}$ IID U[p, 1$]$, where $p_{c} \sim 2 / 3$,
and π_{N} is the stationary distribution.

Bak Sneppen

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID U[0, 1].
- Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with IID $\mathrm{U}[0,1]$ fitnesses.

Watch simulation

Simulations suggest

$$
\left.\pi_{N} \underset{N \rightarrow \infty}{\rightarrow} \text { IID U[p } p_{c}, 1\right], \text { where } p_{c} \sim 2 / 3,
$$

and π_{N} is the stationary distribution.

Bak Sneppen

One of the first models claimed through numerical simulations to exhibit self-organized criticality.

A discrete time ergodic Markov processes with

- N species arranged on the vertices of a cycle (or any finite connected graph).
- Each is a assigned an initial fitness, IID U[0, 1].
- Evolution: at each time, the species with lowest fitness and its neighbors are replaced by new species with IID $\mathrm{U}[0,1]$ fitnesses.

Watch simulation

Simulations suggest

$$
\left.\pi_{N} \underset{N \rightarrow \infty}{\rightarrow} \text { IID U[p } p_{c}, 1\right], \text { where } p_{c} \sim 2 / 3,
$$

and π_{N} is the stationary distribution.
Open.

Bak Sneppen Avalanches

An avalanche from threshold p is a part of the path from time all fitnesses are $\geq p$ until next time this happens.

The avalanches provide a natural regenerative structure for the process.

- Evolution of avalanche depends on the past only through the location of site with lowest fitness when started.
- As a result, the sequence of durations of avalanches are IID, and so is the number of vertices affected during each avalanche, AKA the range of the avalanche.

Bak Sneppen Avalanches

An avalanche from threshold p is a part of the path from time all fitnesses are $\geq p$ until next time this happens.

The avalanches provide a natural regenerative structure for the process.

- Evolution of avalanche depends on the past only through the location of site with lowest fitness when started.
- As a result, the sequence of durations of avalanches are IID, and so is the number of vertices affected during each avalanche, AKA the range of the avalanche.

Bak Sneppen Avalanches

An avalanche from threshold p is a part of the path from time all fitnesses are $\geq p$ until next time this happens.

The avalanches provide a natural regenerative structure for the process.

- Evolution of avalanche depends on the past only through the location of site with lowest fitness when started.
- As a result, the sequence of durations of avalanches are IID, and so is the number of vertices affected during each avalanche, AKA the range of the avalanche.

Bak Sneppen Avalanches

An avalanche from threshold p is a part of the path from time all fitnesses are $\geq p$ until next time this happens.

The avalanches provide a natural regenerative structure for the process.

- Evolution of avalanche depends on the past only through the location of site with lowest fitness when started.
- As a result, the sequence of durations of avalanches are IID, and so is the number of vertices affected during each avalanche, AKA the range of the avalanche.

Bak-Sneppen Avalanche Statistics

Notation

$$
\begin{aligned}
& D_{N}(p)=\text { Duration of avalanche from threshold } \mathrm{p} \\
& R_{N}(p)=\text { Range of avalance from threshold } \mathrm{p} \\
& P_{N}(p)=P\left(R_{N}(p)=N\right)
\end{aligned}
$$

Consider an avalanche from threshold p on \mathbb{Z} with initial fitness configuration

As before, let
$D_{\infty}(p)=$ Duration of avalanche
$R_{\infty}(p)=$ Range of avalanche
$P_{\infty}(p)=P\left(R_{\infty}(p)=\infty\right)$

Theorem 1 (Meester-Znamenski '04)
$F D_{N}(n) \rightarrow F D_{-}(n) \quad F R_{N}(n) \rightarrow F R_{-}(n) P_{N}(p) \rightarrow P_{\infty}(p)$

- Asymptotic properties can be studied by considering the infinite system.
- Main idea: embedding in and coupling of finite svstem in infinite svstem.

Bak-Sneppen Avalanche Statistics

Notation

$$
\begin{aligned}
& D_{N}(p)=\text { Duration of avalanche from threshold } \mathrm{p} \\
& R_{N}(p)=\text { Range of avalance from threshold } \mathrm{p} \\
& P_{N}(p)=P\left(R_{N}(p)=N\right)
\end{aligned}
$$

Consider an avalanche from threshold p on \mathbb{Z} with initial fitness configuration

$$
\ldots, 1,1, \ldots, \underset{\substack{\uparrow \\ \text { origin }}}{p}, 1,1, \ldots
$$

As before, let
$D_{\infty}(p)=$ Duration of avalanche
$R_{\infty}(p)=$ Range of avalanche
$P_{\infty}(p)=P\left(R_{\infty}(p)=\infty\right)$

Theorem 1 (Meester-Znamenski '04)
$E D_{N}(p) \rightarrow E D_{\infty}(p), E R_{N}(p) \rightarrow E R_{\infty}(p), P_{N}(p) \rightarrow P_{\infty}(p)$

- Asymptotic properties can be studied by considering the infinite system.
- Main idea: embedding in and coupling of finite system in infinite system.

Bak-Sneppen Avalanche Statistics

Notation

$$
\begin{aligned}
& D_{N}(p)=\text { Duration of avalanche from threshold } \mathrm{p} \\
& R_{N}(p)=\text { Range of avalance from threshold } \mathrm{p} \\
& P_{N}(p)=P\left(R_{N}(p)=N\right)
\end{aligned}
$$

Consider an avalanche from threshold p on \mathbb{Z} with initial fitness configuration

$$
\ldots, 1,1, \ldots, \underset{\substack{\uparrow \\ \text { origin }}}{p}, 1,1, \ldots
$$

As before, let

$$
\begin{aligned}
& D_{\infty}(p)=\text { Duration of avalanche } \\
& R_{\infty}(p)=\text { Range of avalanche } \\
& P_{\infty}(p)=P\left(R_{\infty}(p)=\infty\right)
\end{aligned}
$$

Theorem 1 (Meester-Znamenski '04)
$E D_{N}(p) \rightarrow E D_{\infty}(p), E R_{N}(p) \rightarrow E R_{\infty}(p), P_{N}(p) \rightarrow P_{\infty}(p)$

- Asymptotic properties can be studied by considering the infinite system.
- Main idea: embedding in and coupling of finite system in infinite system.

Bak-Sneppen Avalanche Statistics

Notation

$$
\begin{aligned}
& D_{N}(p)=\text { Duration of avalanche from threshold } \mathrm{p} \\
& R_{N}(p)=\text { Range of avalance from threshold } \mathrm{p} \\
& P_{N}(p)=P\left(R_{N}(p)=N\right)
\end{aligned}
$$

Consider an avalanche from threshold p on \mathbb{Z} with initial fitness configuration

$$
\ldots, 1,1, \ldots, \underset{\substack{\uparrow \\ \text { origin }}}{p}, 1,1, \ldots
$$

As before, let

$$
\begin{aligned}
& D_{\infty}(p)=\text { Duration of avalanche } \\
& R_{\infty}(p)=\text { Range of avalanche } \\
& P_{\infty}(p)=P\left(R_{\infty}(p)=\infty\right)
\end{aligned}
$$

Theorem 1 (Meester-Znamenski ‘04)
$E D_{N}(p) \rightarrow E D_{\infty}(p), E R_{N}(p) \rightarrow E R_{\infty}(p), P_{N}(p) \rightarrow P_{\infty}(p)$.

- Asymptotic properties can be studied by considering the infinite system.
- Main idea: embedding in and coupling of finite system in infinite system.

Bak-Sneppen Avalanche Statistics

Notation

$$
\begin{aligned}
& D_{N}(p)=\text { Duration of avalanche from threshold } \mathrm{p} \\
& R_{N}(p)=\text { Range of avalance from threshold } \mathrm{p} \\
& P_{N}(p)=P\left(R_{N}(p)=N\right)
\end{aligned}
$$

Consider an avalanche from threshold p on \mathbb{Z} with initial fitness configuration

$$
\ldots, 1,1, \ldots, \underset{\substack{\uparrow \\ \text { origin }}}{p}, 1,1, \ldots
$$

As before, let

$$
\begin{aligned}
& D_{\infty}(p)=\text { Duration of avalanche } \\
& R_{\infty}(p)=\text { Range of avalanche } \\
& P_{\infty}(p)=P\left(R_{\infty}(p)=\infty\right)
\end{aligned}
$$

Theorem 1 (Meester-Znamenski '04)
$E D_{N}(p) \rightarrow E D_{\infty}(p), E R_{N}(p) \rightarrow E R_{\infty}(p), P_{N}(p) \rightarrow P_{\infty}(p)$.

- Asymptotic properties can be studied by considering the infinite system.
- Main idea: embedding in and coupling of finite system in infinite system

Bak-Sneppen Avalanche Statistics

Notation

$$
\begin{aligned}
& D_{N}(p)=\text { Duration of avalanche from threshold } \mathrm{p} \\
& R_{N}(p)=\text { Range of avalance from threshold } \mathrm{p} \\
& P_{N}(p)=P\left(R_{N}(p)=N\right)
\end{aligned}
$$

Consider an avalanche from threshold p on \mathbb{Z} with initial fitness configuration

$$
\ldots, 1,1, \ldots, \underset{\substack{\uparrow \\ \text { origin }}}{p}, 1,1, \ldots
$$

As before, let

$$
\begin{aligned}
& D_{\infty}(p)=\text { Duration of avalanche } \\
& R_{\infty}(p)=\text { Range of avalanche } \\
& P_{\infty}(p)=P\left(R_{\infty}(p)=\infty\right)
\end{aligned}
$$

Theorem 1 (Meester-Znamenski '04)
$E D_{N}(p) \rightarrow E D_{\infty}(p), E R_{N}(p) \rightarrow E R_{\infty}(p), P_{N}(p) \rightarrow P_{\infty}(p)$.

- Asymptotic properties can be studied by considering the infinite system.
- Main idea: embedding in and coupling of finite system in infinite system.

Critical Thresholds

Define

$$
\begin{aligned}
p_{D} & =\inf \left\{p: E D_{\infty}(p)=\infty\right\} \\
p_{R} & =\inf \left\{p: E R_{\infty}(p)=\infty\right\} \\
p_{P} & =\inf \left\{p: P_{\infty}(p)>0\right\}
\end{aligned}
$$

Theorem 2 (Meester-Znamenski ‘03,Meester-Znamenski '04)

1. $0<p D=p R \leq p p<1-e^{-68}$
2. If $p_{R}=p_{p}$, then $\pi_{N} \underset{N \rightarrow \infty}{\rightarrow} \| D U\left[p_{p}, 1\right]$.

Letting F be the fitness at some distinguished site 0 , then
Droposition 1

1. $\pi_{N}\left(F \leq p_{D}\right) \rightarrow 0$.
2. $\pi_{N}\left(F \in \cdot \mid F>p_{P}\right) \rightarrow U[p p, 1]$.

This was not stated in the paper, but follows from the proofs.

Critical Thresholds

Define

$$
\begin{aligned}
p_{D} & =\inf \left\{p: E D_{\infty}(p)=\infty\right\} \\
p_{R} & =\inf \left\{p: E R_{\infty}(p)=\infty\right\} \\
p_{P} & =\inf \left\{p: P_{\infty}(p)>0\right\}
\end{aligned}
$$

Theorem 2 (Meester-Znamenski "03,Meester-Znamenski '04)

1. $0<p_{D}=p_{R} \leq p_{P}<1-e^{-68}$.
2. If $p_{R}=p_{P}$, then $\pi_{N} \underset{N \rightarrow \infty}{\rightarrow} I I D U\left[p_{P}, 1\right]$.

Letting F be the fitness at some distinguished site 0 , then
Proposition 1

1. $\pi_{N}\left(F \leq P_{D}\right) \rightarrow 0$.
2. $\pi_{N}\left(F \in \cdot \mid F>p_{P}\right) \rightarrow U\left[p_{P}, 1\right]$.

This was not stated in the paper, but follows from the proofs.

Critical Thresholds

Define

$$
\begin{aligned}
p_{D} & =\inf \left\{p: E D_{\infty}(p)=\infty\right\} \\
p_{R} & =\inf \left\{p: E R_{\infty}(p)=\infty\right\} \\
p_{P} & =\inf \left\{p: P_{\infty}(p)>0\right\}
\end{aligned}
$$

Theorem 2 (Meester-Znamenski "03,Meester-Znamenski '04)

1. $0<p_{D}=p_{R} \leq p_{P}<1-e^{-68}$.
2. If $p_{R}=p_{P}$, then $\pi_{N} \underset{N \rightarrow \infty}{\rightarrow} I I D U\left[p_{P}, 1\right]$.

Letting F be the fitness at some distinguished site 0 , then
Proposition 1

1. $\pi_{N}\left(F \leq p_{D}\right) \rightarrow 0$.
2. $\pi_{N}\left(F \in \cdot \mid F>p_{P}\right) \rightarrow U\left[p_{P}, 1\right]$.

This was not stated in the paper, but follows from the proofs.

Critical Thresholds

Define

$$
\begin{aligned}
p_{D} & =\inf \left\{p: E D_{\infty}(p)=\infty\right\} \\
p_{R} & =\inf \left\{p: E R_{\infty}(p)=\infty\right\} \\
p_{P} & =\inf \left\{p: P_{\infty}(p)>0\right\}
\end{aligned}
$$

Theorem 2 (Meester-Znamenski "03,Meester-Znamenski '04)

1. $0<p_{D}=p_{R} \leq p_{P}<1-e^{-68}$.
2. If $p_{R}=p_{P}$, then $\pi_{N} \underset{N \rightarrow \infty}{\rightarrow} I I D U\left[p_{P}, 1\right]$.

Letting F be the fitness at some distinguished site 0 , then
Proposition 1

1. $\pi_{N}\left(F \leq p_{D}\right) \rightarrow 0$.
2. $\pi_{N}\left(F \in \cdot \mid F>p_{P}\right) \rightarrow U\left[p_{P}, 1\right]$.

This was not stated in the paper, but follows from the proofs.

Bak Sneppen, a little more

Proposition 2 (B. WIP)
Let

$$
\rho=\inf _{p, d} \sum_{k=1}^{\infty} \frac{1}{d_{k} p_{k}},
$$

where the infimum is taken over all probability distributions $\left(p_{1}, p_{2}, \ldots\right)$ on \mathbb{N} and all-integer nondecreasing valued sequences $\left(d_{k}\right)_{k \in \mathbb{N}}$ with the growth constraint $d_{1}=1, d_{k+1}<2 d_{k}$ for $k>1$. Then

$$
p_{P} \leq 1-e^{-\rho},
$$

- Simulations give $\rho<11.3$.
- We need to get to $-\ln \frac{1}{3}=1.09861228867$.

Theorem 3 (B. WIP)
If $P\left(R_{\infty}(p)>r\right) \geq c r^{-\alpha}$ for some $\alpha<1$, then $p p \leq p$

- Roughly speaking, if $R_{\infty}(p)$ "little" short of being integrable, then p is already above pp.

Bak Sneppen, a little more

Proposition 2 (B. WIP)

Let

$$
\rho=\inf _{p, d} \sum_{k=1}^{\infty} \frac{1}{d_{k} p_{k}},
$$

where the infimum is taken over all probability distributions $\left(p_{1}, p_{2}, \ldots\right)$ on \mathbb{N} and all-integer nondecreasing valued sequences $\left(d_{k}\right)_{k \in \mathbb{N}}$ with the growth constraint $d_{1}=1, d_{k+1}<2 d_{k}$ for $k>1$. Then

$$
p_{P} \leq 1-e^{-\rho},
$$

- Simulations give $\rho<11.3$.
- We need to get to $-\ln \frac{1}{3}=1.09861228867$.

Theorem 3 (B. WIP)
If $P\left(R_{\infty}(p)>r\right) \geq c r^{-\alpha}$ for some $\alpha<1$, then $p p \leq p$

- Roughly speaking, if $R_{\infty}(p)$ "little" short of being integrable, then p is already above p_{p}.

Bak Sneppen, a little more

Proposition 2 (B. WIP)

Let

$$
\rho=\inf _{p, d} \sum_{k=1}^{\infty} \frac{1}{d_{k} p_{k}},
$$

where the infimum is taken over all probability distributions $\left(p_{1}, p_{2}, \ldots\right)$ on \mathbb{N} and all-integer nondecreasing valued sequences $\left(d_{k}\right)_{k \in \mathbb{N}}$ with the growth constraint $d_{1}=1, d_{k+1}<2 d_{k}$ for $k>1$. Then

$$
p_{P} \leq 1-e^{-\rho},
$$

- Simulations give $\rho<11.3$.
- We need to get to $-\ln \frac{1}{3}=1.09861228867$.

Theorem 3 (B. WIP)
If $P\left(R_{\infty}(p)>r\right) \geq c r^{-\alpha}$ for some $\alpha<1$, then $p p \leq p$

- Roughly speaking, if $R_{\infty}(p)$ "little" short of being integrable, then p is already above p_{p}.

Bak Sneppen, a little more

Proposition 2 (B. WIP)

Let

$$
\rho=\inf _{p, d} \sum_{k=1}^{\infty} \frac{1}{d_{k} p_{k}},
$$

where the infimum is taken over all probability distributions $\left(p_{1}, p_{2}, \ldots\right)$ on \mathbb{N} and all-integer nondecreasing valued sequences $\left(d_{k}\right)_{k \in \mathbb{N}}$ with the growth constraint $d_{1}=1, d_{k+1}<2 d_{k}$ for $k>1$. Then

$$
p_{P} \leq 1-e^{-\rho},
$$

- Simulations give $\rho<11.3$.
- We need to get to $-\ln \frac{1}{3}=1.09861228867$.

Theorem 3 (B. WIP)
If $P\left(R_{\infty}(p)>r\right) \geq c r^{-\alpha}$ for some $\alpha<1$, then $p_{P} \leq p$.

- Roughly speaking, if $R_{\infty}(p)$ "little" short of being integrable, then p is already above p p.

Bak Sneppen, a little more

Proposition 2 (B. WIP)

Let

$$
\rho=\inf _{p, d} \sum_{k=1}^{\infty} \frac{1}{d_{k} p_{k}},
$$

where the infimum is taken over all probability distributions (p_{1}, p_{2}, \ldots) on \mathbb{N} and all-integer nondecreasing valued sequences $\left(d_{k}\right)_{k \in \mathbb{N}}$ with the growth constraint $d_{1}=1, d_{k+1}<2 d_{k}$ for $k>1$. Then

$$
p_{P} \leq 1-e^{-\rho},
$$

- Simulations give $\rho<11.3$.
- We need to get to $-\ln \frac{1}{3}=1.09861228867$.

Theorem 3 (B. WIP)
If $P\left(R_{\infty}(p)>r\right) \geq c r^{-\alpha}$ for some $\alpha<1$, then $p_{P} \leq p$.

- Roughly speaking, if $R_{\infty}(p)$ "little" short of being integrable, then p is already above p_{p}.

Bak Sneppen - on proofs

- Tool: Graphical representation of avalanches on \mathbb{Z}, due to Meester and his coauthors.
- Switch from uniform fitnesses to $\operatorname{Exp}(1)$. This allows for Poisson process techniques.
At end of avalanche from threshold b, fitness of sites in its range IID $b+\operatorname{Exp}(1)$.
- To each site attach a rate-1 Poisson process, processes are independent.
- Suppose the avalanche from threshold b starting from the origin has the range given by the arrow.
- Fitness distribution of sites in range coincides with the first arrivals of the Poisson processes above b.
- The range of avalanche from threshold $b+\epsilon$ will be at least $\frac{3}{2} \times R_{b}$, if at least one of the avalanches in the orange region extends to the right at least as R_{b} did.
- Allows to approach through thinning of a Poisson Point Process.
- For large enough b, one can show that exists an infinite cascade of such avalanches below fitness $b+\epsilon$.

Local Bak-Sneppen

Joint with R.C. Silva

Two Geometries

What would be a "proper" tractable analog for Bak-Sneppen ?

The difficulty in the Bak-Sneppen model stems from the following

- Use complete graph geometry to locate the global minimum
> Use "nearest neighbor" geometry to determine at what vertices species will be replaced.

A first attempt at this question would be

- Use one geometry.

The complete graph geometry is trivial so we're left with the latter.

Two Geometries

What would be a "proper" tractable analog for Bak-Sneppen ?
The difficulty in the Bak-Sneppen model stems from the following:

- Use complete graph geometry to locate the global minimum.
- Use "nearest neighbor" geometry to determine at what vertices species will be replaced.

A first attempt at this question would be

- Use one geometry.

The complete graph geometry is trivial so we're left with the latter.

Two Geometries

What would be a "proper" tractable analog for Bak-Sneppen ?
The difficulty in the Bak-Sneppen model stems from the following:

- Use complete graph geometry to locate the global minimum.
> Use "nearest neighbor" geometry to determine at what vertices species will be replaced.

A first attemnt at this question would be

- Use one geometry.

The complete graph geometry is trivial so we're left with the latter

Two Geometries

What would be a "proper" tractable analog for Bak-Sneppen ?
The difficulty in the Bak-Sneppen model stems from the following:

- Use complete graph geometry to locate the global minimum.
- Use "nearest neighbor" geometry to determine at what vertices species will be replaced.

A first attempt at this question would be

- Use one geometry.

The complete graph geometry is trivial so we're left with the latter.

What would be a "proper" tractable analog for Bak-Sneppen ?
The difficulty in the Bak-Sneppen model stems from the following:

- Use complete graph geometry to locate the global minimum.
- Use "nearest neighbor" geometry to determine at what vertices species will be replaced.

A first attempt at this question would be

- Use one geometry.

The complete graph geometry is trivial so we're left with the latter.

What would be a "proper" tractable analog for Bak-Sneppen ?
The difficulty in the Bak-Sneppen model stems from the following:

- Use complete graph geometry to locate the global minimum.
- Use "nearest neighbor" geometry to determine at what vertices species will be replaced.

A first attempt at this question would be

- Use one geometry.

The complete graph geometry is trivial so we're left with the latter.

Local Bak-Sneppen

Consider a finite, connected (undirected) graph $G=(V, E)$.

Initially

- Assign IID $U[0,1]$ fitnesses to each $v \in V$.
- Set X_{0} as the vertex with lowest fitness.

Time evolution

\Rightarrow Given X_{n}, set X_{n+1} to be the vertex with minimal fitness among $u \sim X_{n}$ and X_{n} itself.

- Set fitness of all elements in neighborhood of X_{n+1} as IID $U[0,1]$, independent of past

Observe

- Markov chain on state space $=$ product of V and $[0,1]$-valued functions on V
- Chain is ergodic.

What can we say about this new process ?

Local Bak-Sneppen

Consider a finite, connected (undirected) graph $G=(V, E)$.

Initially

- Assign IID $\mathrm{U}[0,1]$ fitnesses to each $v \in V$.
- Set X_{0} as the vertex with lowest fitness.

Time evolution

- Given X_{n}, set X_{n+1} to be the vertex with minimal fitness among $u \sim X_{n}$ and X_{n} itself.
- Set fitness of all elements in neighborhood of X_{n+1} as IID $\mathrm{U}[0,1]$, independent of past.

Observe

- Markov chain on state space $=$ product of V and $[0,1]$-valued functions on V.
- Chain is ergodic.

What can we say about this new process?

Local Bak-Sneppen

Consider a finite, connected (undirected) graph $G=(V, E)$.

Initially

- Assign IID $\mathrm{U}[0,1]$ fitnesses to each $v \in V$.
- Set X_{0} as the vertex with lowest fitness.

Time evolution

- Given X_{n}, set X_{n+1} to be the vertex with minimal fitness among $u \sim X_{n}$ and X_{n} itself.
- Set fitness of all elements in neighborhood of X_{n+1} as IID $\cup[0,1]$, independent of past.

Observe

- Markov chain on state space $=$ product of V and $[0,1]$-valued functions on V
- Chain is ergodic.

What can we say about this new process ?

Local Bak-Sneppen

Consider a finite, connected (undirected) graph $G=(V, E)$.

Initially

- Assign IID $\mathrm{U}[0,1]$ fitnesses to each $v \in V$.
- Set X_{0} as the vertex with lowest fitness.

Time evolution
\Rightarrow Given X_{n}, set X_{n+1} to be the vertex with minimal fitness among $u \sim X_{n}$ and X_{n} itself.

- Set fitness of all elements in neighborhood of X_{n+1} as IID $U[0,1]$, independent of past.

Observe

- Markov chain on state space $=$ product of V and $[0,1]$-valued functions on V
- Chain is ergodic.

What can we say about this new process ?

Local Bak-Sneppen

Consider a finite, connected (undirected) graph $G=(V, E)$.

Initially

- Assign IID $\mathrm{U}[0,1]$ fitnesses to each $v \in V$.
- Set X_{0} as the vertex with lowest fitness.

Time evolution

- Given X_{n}, set X_{n+1} to be the vertex with minimal fitness among $u \sim X_{n}$ and X_{n} itself.
- Set fitness of all elements in neighborhood of X_{n+1} as IID $U[0,1]$, independent of past.

Observe

- Markov chain on state space $=$ product of V and $[0,1]$-valued functions on V.
- Chain is ergodic.

What can we say about this new process?

Local Bak-Sneppen

Consider a finite, connected (undirected) graph $G=(V, E)$.

Initially

- Assign IID $\mathrm{U}[0,1]$ fitnesses to each $v \in V$.
- Set X_{0} as the vertex with lowest fitness.

Time evolution

- Given X_{n}, set X_{n+1} to be the vertex with minimal fitness among $u \sim X_{n}$ and X_{n} itself.
- Set fitness of all elements in neighborhood of X_{n+1} as IID $\mathrm{U}[0,1]$, independent of past.
Observe
- Markov chain on state space $=$ product of V and $[0,1]$-valued functions on V.
- Chain is ergodic.

What can we say about this new process?

Local Bak-Sneppen

Consider a finite, connected (undirected) graph $G=(V, E)$.

Initially

- Assign IID $\mathrm{U}[0,1]$ fitnesses to each $v \in V$.
- Set X_{0} as the vertex with lowest fitness.

Time evolution

- Given X_{n}, set X_{n+1} to be the vertex with minimal fitness among $u \sim X_{n}$ and X_{n} itself.
- Set fitness of all elements in neighborhood of X_{n+1} as IID $\mathrm{U}[0,1]$, independent of past.

Observe

- Markov chain on state space $=$ product of V and $[0,1]$-valued functions on V.
- Chain is ergodic.

What can we say about this new process?

Local Bak-Sneppen

Consider a finite, connected (undirected) graph $G=(V, E)$.

Initially

- Assign IID $\mathrm{U}[0,1]$ fitnesses to each $v \in V$.
- Set X_{0} as the vertex with lowest fitness.

Time evolution

- Given X_{n}, set X_{n+1} to be the vertex with minimal fitness among $u \sim X_{n}$ and X_{n} itself.
- Set fitness of all elements in neighborhood of X_{n+1} as IID $\mathrm{U}[0,1]$, independent of past.

Observe

- Markov chain on state space $=$ product of V and $[0,1]$-valued functions on V.
- Chain is ergodic.

What can we say about this new process ?

Stationary Distribution for Local Bak-Sneppen

Notation

\Rightarrow For $v \in V, A_{v}=\{u \in V:\{u, v\} \in E$ or $u=v\}$.

- Random walk on G : from $v \in V$ move to uniformly sampled $u \in A_{v}$.
- Stationary distribution: $\mu(v)=\frac{\left|A_{v}\right|}{\sum_{u \in V}\left|A_{u}\right|}$.
> If U_{1}, \ldots, U_{n} are IID $U[0,1]$, then $\operatorname{set} U(n,[0,1])$ as the distribution

$$
P\left(U_{1} \in \cdot \mid U_{1}>\min \left\{U_{2}, \ldots, U_{n}\right\}\right)
$$

Theorem 4 (Silva-B.)
> Lei ($\boldsymbol{Z}_{n}^{\prime \prime}: n \in \mathbb{Z}_{+}$) be independent random walks on G with $Z_{0}^{u}=u$.

- Sample X independently according to μ.
- Set

$$
\tau_{v}=\inf \left\{n \in \mathbb{Z}_{+}: Z_{n}^{X} \in A_{v}\right\}, \text { and } V_{i}=\left\{v \in V: \tau_{v}=i\right\}
$$

Given V_{0}, V_{1}, \ldots, assign fitnesses at each $v \in V$, which are independent and are

1. $U[0,1]$ for $v \in A x=V_{0}$.
2. $U\left(\left|A_{z_{i}^{x}}\right|,[0,1]\right)$ if $v \in V_{i}, i>0$.

Then the joint distribution of X and the fitnesses is stationary for the local Bak-Sneppen.

Stationary Distribution for Local Bak-Sneppen

Notation

- For $v \in V, A_{v}=\{u \in V:\{u, v\} \in E$ or $u=v\}$.
- Random walk on G : from $v \in V$ move to uniformly sampled $u \in A_{v}$.
- Stationary distribution: $\mu(v)=\frac{\left|A_{v}\right|}{\sum_{u \in V}\left|A_{u}\right|}$.
- If U_{1}, \ldots, U_{n} are IID $\mathrm{U}[0,1]$, then set $\mathrm{U}(n,[0,1])$ as the distribution

$$
P\left(U_{1} \in \cdot \mid U_{1}>\min \left\{U_{2}, \ldots, U_{n}\right\}\right) .
$$

Theorem 4 (Silva-B.)

- Let $\left(Z_{n}: n \subset \mathbb{T}\right.$) be independent random walks on G with $Z_{0}^{u}=u$.
- Sample X independently according to μ.
- Set

$$
\tau_{v}=\inf \left\{n \in \mathbb{Z}_{+}: Z_{n}^{X} \in A_{v}\right\}, \text { and } V_{i}=\left\{v \in V: \tau_{v}=i\right\} .
$$

Given V_{0}, V_{1}, \ldots, assign fitnesses at each $v \in V$, which are independent and are

1. $U[0,1]$ for $v \in A_{X}=V_{0}$.
2. $U\left(\left|A_{z_{i}^{x}}\right|,[0,1]\right)$ if $v \in V_{i}, i>0$.

Then the joint distribution of X and the fitnesses is stationary for the local Bak-Sneppen.

Stationary Distribution for Local Bak-Sneppen

Notation

- For $v \in V, A_{v}=\{u \in V:\{u, v\} \in E$ or $u=v\}$.
- Random walk on G : from $v \in V$ move to uniformly sampled $u \in A_{v}$.
- Stationary distribution: $\mu(v)=\frac{A_{V}}{\sum_{u \in V}\left|A_{u}\right|}$
- If U_{1}, \ldots, U_{n} are IID $\mathrm{U}[0,1]$, then set $\mathrm{U}(n,[0,1])$ as the distribution

$$
P\left(U_{1} \in \mid U_{1}>\min \left\{U_{2}, \quad U_{n}\right\}\right)
$$

Theorem 4 (Silva-B.)

- Let $\left(Z_{n}^{u}: n \in \mathbb{T}_{+}\right)$be independent random walks on G with $Z_{0}^{u}=u$.
- Sample X independently according to μ.
- Set

$$
\tau_{v}=\inf \left\{n \in \mathbb{Z}_{+}: Z_{n}^{X} \in A_{v}\right\}, \text { and } V_{i}=\left\{v \in V: \tau_{v}=i\right\} .
$$

Given V_{0}, V_{1}, \ldots, assign fitnesses at each $v \in V$, which are independent and are

1. $U[0,1]$ for $v \in A_{X}=V_{0}$.
2. $U\left(\left|A_{z^{x}}\right|,[0,1]\right)$ if $v \in V_{i}, i>0$.

Then the joint distribution of X and the fitnesses is stationary for the local
Bak-Sneppen.

Stationary Distribution for Local Bak-Sneppen

Notation

- For $v \in V, A_{v}=\{u \in V:\{u, v\} \in E$ or $u=v\}$.
- Random walk on G : from $v \in V$ move to uniformly sampled $u \in A_{v}$.
- Stationary distribution: $\mu(v)=\frac{\left|A_{v}\right|}{\sum_{u \in V}\left|A_{u}\right|}$.
- If U_{1}, \ldots, U_{n} are IID $U[0,1]$, then set $U(n,[0,1])$ as the distribution

$$
P\left(U_{1} \in \cdot \mid U_{1}>\min \left\{U_{2}, \ldots, U_{n}\right\}\right) .
$$

Theorem 4 (Silva-B.)

- Let $\left(Z_{n}^{u}: n \in \mathbb{Z}_{+}\right)$be independent random walks on G with $Z_{0}^{u}=u$.
- Sample X independently according to μ.
- Set

$$
\tau_{v}=\inf \left\{n \in \mathbb{Z}_{+}: Z_{n}^{X} \in A_{v}\right\}, \text { and } V_{i}=\left\{v \in V: \tau_{v}=i\right\} .
$$

Given V_{0}, V_{1}, \ldots, assign fitnesses at each $v \in V$, which are independent and are

1. $U[0,1]$ for $v \in A_{X}=V_{0}$.
2. $U\left(\left|A_{z^{x}}\right|,[0,1]\right)$ if $v \in V_{i}, i>0$.

Then the joint distribution of X and the fitnesses is stationary for the local
Bak-Sneppen.

Stationary Distribution for Local Bak-Sneppen

Notation

- For $v \in V, A_{v}=\{u \in V:\{u, v\} \in E$ or $u=v\}$.
- Random walk on G : from $v \in V$ move to uniformly sampled $u \in A_{v}$.
- Stationary distribution: $\mu(v)=\frac{\left|A_{v}\right|}{\sum_{u \in V}\left|A_{u}\right|}$.
- If U_{1}, \ldots, U_{n} are IID $\mathrm{U}[0,1]$, then set $\mathrm{U}(n,[0,1])$ as the distribution

$$
P\left(U_{1} \in \cdot \mid U_{1}>\min \left\{U_{2}, \ldots, U_{n}\right\}\right)
$$

Theorem 4 (Silva-B.)

- Let $\left(\mathbb{Z}_{n}^{u}: n \subset \mathbb{T}_{+}\right)$be independent random walks on G with $Z_{0}^{u}=u$
- Sample X independently according to μ.
- Set

$$
\tau_{v}=\inf \left\{n \in \mathbb{Z}_{+}: Z_{n}^{X} \in A_{v}\right\}, \text { and } V_{i}=\left\{v \in V: \tau_{v}=i\right\} .
$$

Given V_{0}, V_{1}, \ldots, assign fitnesses at each $v \in V$, which are independent and are

1. $U[0,1]$ for $v \in A_{X}=V_{0}$.
2. $U\left(\left|A_{z_{i}^{x}}\right|,[0,1]\right)$ if $v \in V_{i}, i>0$.

Then the joint distribution of X and the fitnesses is stationary for the local
Bak-Sneppen.

Stationary Distribution for Local Bak-Sneppen

Notation

- For $v \in V, A_{v}=\{u \in V:\{u, v\} \in E$ or $u=v\}$.
- Random walk on G : from $v \in V$ move to uniformly sampled $u \in A_{v}$.
- Stationary distribution: $\mu(v)=\frac{\left|A_{v}\right|}{\sum_{u \in V}\left|A_{u}\right|}$.
- If U_{1}, \ldots, U_{n} are IID $\mathrm{U}[0,1]$, then set $\mathrm{U}(n,[0,1])$ as the distribution

$$
P\left(U_{1} \in \cdot \mid U_{1}>\min \left\{U_{2}, \ldots, U_{n}\right\}\right)
$$

Theorem 4 (Silva-B.)

- Let $\left(Z_{n}^{u}: n \in \mathbb{Z}_{+}\right)$be independent random walks on G with $Z_{0}^{u}=u$.
- Sample X independently according to μ.
- Set

$$
\tau_{v}=\inf \left\{n \in \mathbb{Z}_{+}: Z_{n}^{X} \in A_{v}\right\}, \text { and } V_{i}=\left\{v \in V: \tau_{v}=i\right\}
$$

Given V_{0}, V_{1}, \ldots, assign fitnesses at each $v \in V$, which are independent and are

1. $U[0,1]$ for $v \in A_{X}=V_{0}$.
2. $U\left(\left|A_{Z_{i}^{x}}\right|,[0,1]\right)$ if $v \in V_{i}, i>0$.

Then the joint distribution of X and the fitnesses is stationary for the local Bak-Sneppen.

Local Bak-Sneppen for Regular Graphs

Corollary 1
If G is d-regular, then the stationary distribution for the local Bak-Sneppen satisfies:

- X is uniform.
- Given X, the fitnesses are independent and

1. $U[0,1]$ for vertices in A_{X}.
2. $U(d+1,[0,1])$ for all other vertices.

Now send size to infinity
Corollary 2
Suppose that $\left(V_{n}: n \in \mathbb{N}\right)$ is an increasing sequence of finite sets. For each n, let $G_{n}=\left(V_{n}, E_{n}\right)$ be a d-regular connected graph.
Then

- The fitnesses under the stationary distribution for the local Bak-Sneppen on G_{n} converge weakly to an IID measure with marginal $U(d+1,[0,1])$.
- IID structure, as expected for Bak-Sneppen.
- Unlike Bak-Sneppen: no threshold.

Local Bak-Sneppen for Regular Graphs

Corollary 1
If G is d-regular, then the stationary distribution for the local Bak-Sneppen satisfies:

- X is uniform.
- Given X, the fitnesses are independent and

1. $U[0,1]$ for vertices in A_{X}.
2. $U(d+1,[0,1])$ for all other vertices.

Now send size to infinity

```
Corollary 2
Suppose that ( }\mp@subsup{V}{n}{}:n\in\mathbb{N})\mathrm{ is an increasing sequence of finite sets. For each n, let
G}=(\mp@subsup{V}{n}{},\mp@subsup{E}{n}{})\mathrm{ be a d-regular connected graph.
Then
- The fitnesses under the stationary distribution for the local Bak-Sneppen on \(G_{n}\) converge weakly to an IID measure with marginal \(U(d+1,[0,1])\).
```

- IID structure, as expected for Bak-Sneppen.
- Unlike Bak-Sneppen: no threshold.

Local Bak-Sneppen for Regular Graphs

Corollary 1
If G is d-regular, then the stationary distribution for the local Bak-Sneppen satisfies:

- X is uniform.
- Given X, the fitnesses are independent and

1. $U[0,1]$ for vertices in A_{X}.
2. $U(d+1,[0,1])$ for all other vertices.

Now send size to infinity
Corollary 2
Suppose that $\left(V_{n}: n \in \mathbb{N}\right)$ is an increasing sequence of finite sets. For each n, let $G_{n}=\left(V_{n}, E_{n}\right)$ be a d-regular connected graph.
Then

- The fitnesses under the stationary distribution for the local Bak-Sneppen on G_{n} converge weakly to an IID measure with marginal $U(d+1,[0,1])$.
- IID structure, as expected for Bak-Sneppen.
- Unlike Bak-Sneppen: no threshold.

Local Bak-Sneppen for Regular Graphs

Corollary 1
If G is d-regular, then the stationary distribution for the local Bak-Sneppen satisfies:

- X is uniform.
- Given X, the fitnesses are independent and

1. $U[0,1]$ for vertices in A_{X}.
2. $U(d+1,[0,1])$ for all other vertices.

Now send size to infinity
Corollary 2
Suppose that $\left(V_{n}: n \in \mathbb{N}\right)$ is an increasing sequence of finite sets. For each n, let $G_{n}=\left(V_{n}, E_{n}\right)$ be a d-regular connected graph.
Then

- The fitnesses under the stationary distribution for the local Bak-Sneppen on G_{n} converge weakly to an IID measure with marginal $U(d+1,[0,1])$.
- IID structure, as expected for Bak-Sneppen.
- Unlike Bak-Sneppen: no threshold.

Local Bak-Sneppen for Regular Graphs

Corollary 1
If G is d-regular, then the stationary distribution for the local Bak-Sneppen satisfies:

- X is uniform.
- Given X, the fitnesses are independent and

1. $U[0,1]$ for vertices in A_{X}.
2. $U(d+1,[0,1])$ for all other vertices.

Now send size to infinity
Corollary 2
Suppose that $\left(V_{n}: n \in \mathbb{N}\right)$ is an increasing sequence of finite sets. For each n, let $G_{n}=\left(V_{n}, E_{n}\right)$ be a d-regular connected graph.
Then

- The fitnesses under the stationary distribution for the local Bak-Sneppen on G_{n} converge weakly to an IID measure with marginal $U(d+1,[0,1])$.
- IID structure, as expected for Bak-Sneppen.
- Unlike Bak-Sneppen: no threshold.

Guiol-Machado-Schinazi

Guiol-Machado-Schinazi

Why ?

> Have population growth be part of model, not external parameter.

- Tractability.

Construction

- The population size is a reflected random walk on \mathbb{Z}_{+}(that is random walk minus its running minimum).
- When ponulation increases, AKA birth (possibly multiple), new individuals are assigned IID $\cup[0,1]$ fitnesses.
- When population decreases, the individual with lowest fitness is eliminated.

What is the asymntotic fitness distribution ?
More precisely, letting $\hat{F}_{n}(f)$ denote the empirical fitness distribution

$$
\hat{F}_{n}(f)= \begin{cases}\text { prop. with fitness } \leq f & \text { if pop. size is }>0 \\ \text { CDF of } \delta_{0} & \text { otherwise. }\end{cases}
$$

Understand limit (LLN) and fluctuations (CLT) of \hat{F}_{n} as $n \rightarrow \infty$.

Guiol-Machado-Schinazi

Why ?

- Have population growth be part of model, not external parameter.
- Tractability.

Construction

- The ponulation size is a reflected random walk on \mathbb{Z}_{+}(that is random walk minus its running minimum).
- When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?
More precisely, letting $\hat{F}_{n}(f)$ denote the empirical fitness distribution

$$
\hat{F}_{n}(f)= \begin{cases}\text { prop. with fitness } \leq f & \text { if pop. size is }>0 \\ \text { CDF of } \delta_{0} & \text { otherwise. }\end{cases}
$$

Understand limit (LLN) and fluctuations (CLT) of \hat{F}_{n} as $n \rightarrow \infty$.

Guiol-Machado-Schinazi

Why ?

- Have population growth be part of model, not external parameter.
- Tractability.

Construction

- The population size is a reflected random walk on \mathbb{Z}_{+}(that is random walk minus its running minimum).
- When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?
More precisely, letting $\hat{F}_{n}(f)$ denote the empirical fitness distribution

$$
\hat{F}_{n}(f)= \begin{cases}\text { prop. with fitness } \leq f & \text { if pop. size is }>0 \\ \text { CDF of } \delta_{0} & \text { otherwise. }\end{cases}
$$

Understand limit (LLN) and fluctuations (CLT) of \hat{F}_{n} as $n \rightarrow \infty$.

Guiol-Machado-Schinazi

Why ?

- Have population growth be part of model, not external parameter.
- Tractability.

Construction

- The population size is a reflected random walk on \mathbb{Z}_{+}(that is random walk minus its running minimum).
- When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?
More precisely, letting $\hat{F}_{n}(f)$ denote the empirical fitness distribution

Understand limit (LLN) and fluctuations (CLT) of \hat{F}_{n} as $n \rightarrow \infty$.

Guiol-Machado-Schinazi

Why ?

- Have population growth be part of model, not external parameter.
- Tractability.

Construction

- The population size is a reflected random walk on \mathbb{Z}_{+}(that is random walk minus its running minimum).
- When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?
More precisely, letting $\hat{F}_{n}(f)$ denote the empirical fitness distribution

Understand limit (LLN) and fluctuations (CLT) of \hat{F}_{n} as $n \rightarrow \infty$.

Guiol-Machado-Schinazi

Why ?

- Have population growth be part of model, not external parameter.
- Tractability.

Construction

- The population size is a reflected random walk on \mathbb{Z}_{+}(that is random walk minus its running minimum).
- When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?
More precisely, letting $\hat{F}_{n}(f)$ denote the empirical fitness distribution

Understand limit (LLN) and fluctuations (CLT) of \hat{F}_{n} as $n \rightarrow \infty$.

Guiol-Machado-Schinazi

Why ?

- Have population growth be part of model, not external parameter.
- Tractability.

Construction

- The population size is a reflected random walk on \mathbb{Z}_{+}(that is random walk minus its running minimum).
- When population increases, AKA birth (possibly multiple), new individuals are assigned IID $U[0,1]$ fitnesses.
- When population decreases, the individual with lowest fitness is eliminated

What is the asymptotic fitness distribution ?
More precisely, letting $\hat{F}_{n}(f)$ denote the empirical fitness distribution

Understand limit (LLN) and fluctuations (CLT) of \hat{F}_{n} as $n \rightarrow \infty$.

Guiol-Machado-Schinazi

Why ?

- Have population growth be part of model, not external parameter.
- Tractability.

Construction

- The population size is a reflected random walk on \mathbb{Z}_{+}(that is random walk minus its running minimum).
- When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?
More precisely, letting $\hat{F}_{n}(f)$ denote the empirical fitness distribution

Understand limit (LLN) and fluctuations (CLT) of \hat{F}_{n} as $n \rightarrow \infty$.

Guiol-Machado-Schinazi

Why ?

- Have population growth be part of model, not external parameter.
- Tractability.

Construction

- The population size is a reflected random walk on \mathbb{Z}_{+}(that is random walk minus its running minimum).
- When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_{n}(f)$ denote the empirical fitness distribution

Understand limit (LLN) and fluctuations (CLT) of \hat{F}_{n} as $n \rightarrow \infty$.

Guiol-Machado-Schinazi

Why ?

- Have population growth be part of model, not external parameter.
- Tractability.

Construction

- The population size is a reflected random walk on \mathbb{Z}_{+}(that is random walk minus its running minimum).
- When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?
More precisely, letting $\hat{F}_{n}(f)$ denote the empirical fitness distribution

Understand limit (LLN) and fluctuations (CLT) of \hat{F}_{n} as $n \rightarrow \infty$.

Guiol-Machado-Schinazi

Why ?

- Have population growth be part of model, not external parameter.
- Tractability.

Construction

- The population size is a reflected random walk on \mathbb{Z}_{+}(that is random walk minus its running minimum).
- When population increases, AKA birth (possibly multiple), new individuals are assigned IID U[0, 1] fitnesses.
- When population decreases, the individual with lowest fitness is eliminated.

What is the asymptotic fitness distribution ?

More precisely, letting $\hat{F}_{n}(f)$ denote the empirical fitness distribution

$$
\hat{F}_{n}(f)= \begin{cases}\text { prop. with fitness } \leq f & \text { if pop. size is }>0 \\ \text { CDF of } \delta_{0} & \text { otherwise. }\end{cases}
$$

Understand limit (LLN) and fluctuations (CLT) of \hat{F}_{n} as $n \rightarrow \infty$.

GMS Law of Large Numbers

Notation.

```
    > \(\mid \xlongequal[=]{=}\) Incement of random walk.
    \(\Rightarrow I=I_{+}-I_{-}\)where,
    \(I_{+}=\max (I, 0)\) is the positive increment; and
    \(I_{-}=\max (-I, 0)\) the nagative increment.
Assumptions.
    - \(E \mid I<\infty\).
    - Transience: EI \(>\) EI
Theorem 5 (GMS, Volkov-Skevi, B.)
Let \(f_{c}=E I_{-} / E I_{+} \in[0.1)\). Then
    \(\hat{F}_{n} \rightarrow F_{\infty}:=C D F\) of \(U\left[f_{c}, 1\right]\), uniformly, a.s.
If \(/\) is deterministic (that is population grows deterministically), this is
Glivenko-Cantelli.
```


GMS Law of Large Numbers

Notation.

- $I \stackrel{\text { dist }}{=}$ Incement of random walk.
- $I=I_{+}-I_{-}$where,
$I_{+}=\max (I, 0)$ is the positive increment; and
$I_{-}=\max (-I, 0)$ the nagative increment.

Assumptions.

- $E|I|<\infty$
- Transience: El > El

Theorem 5 (GMS, Volkov-Skevi, B.)
Let $f_{-}=F I \quad / E I, \in\left[\begin{array}{ll}0 & 1) \text {. Then }\end{array}\right.$

$$
\hat{F}_{n} \rightarrow F_{\infty}:=C D F \text { of } U\left[f_{c}, 1\right], \text { uniformly, a.s. }
$$

If I is deterministic (that is population grows deterministically), this is Glivenko-Cantelli.

GMS Law of Large Numbers

Notation.

- $I \stackrel{\text { dist }}{=}$ Incement of random walk.
- $I=I_{+}-I_{-}$where,
$I_{+}=\max (I, 0)$ is the positive increment; and
$I_{-}=\max (-I, 0)$ the nagative increment.

Assumptions.

- $E|I|<\infty$
- Transience: El $>$ El

Theorem 5 (GMS, Volkov-Skevi, B.)
Let $f_{c}=E I_{-} / E I_{+} \in[0.1)$. Then

$$
\hat{F}_{n} \rightarrow F_{\infty}:=C D F \text { of } U\left[f_{c}, 1\right], \text { uniformly, a.s. }
$$

If I is deterministic (that is population grows deterministically), this is Glivenko-Cantelli.

GMS Law of Large Numbers

Notation.

- $I \stackrel{\text { dist }}{=}$ Incement of random walk.
- $I=I_{+}-I_{-}$where,
$I_{+}=\max (I, 0)$ is the positive increment; and
$I_{-}=\max (-I, 0)$ the nagative increment.

Assumptions.

- Transience: $E I_{+}>E I$

Theorem 5 (GMS, Volkov-Skevi, B.)
Let $f_{c}=E I_{-} / E I_{+} \in[0,1)$. Then

$$
\hat{F}_{n} \rightarrow F_{\infty}:=C D F \text { of } U\left[f_{c}, 1\right] \text {, uniformly, a.s. }
$$

If I is deterministic (that is population grows deterministically), this is Glivenko-Cantelli.

GMS Law of Large Numbers

Notation.

- $I \stackrel{\text { dist }}{=}$ Incement of random walk.
- $I=I_{+}-I_{-}$where,
$I_{+}=\max (I, 0)$ is the positive increment; and
$I_{-}=\max (-I, 0)$ the nagative increment.

Assumptions.

- $E|I|<\infty$.
-Transience: El + El_
Theorem 5 (GMS, Volkov-Skevi, B.)
Let $f_{c}=E I_{-} / E I_{+} \in[0.1)$. Then

$$
\hat{F}_{n} \rightarrow F_{\infty}:=C D F \text { of } U\left[f_{c}, 1\right], \text { uniformly, a.s. }
$$

If I is deterministic (that is population grows deterministically), this is Glivenko-Cantelli.

GMS Law of Large Numbers

Notation.

- $I \stackrel{\text { dist }}{=}$ Incement of random walk.
- $I=I_{+}-I_{-}$where,
$I_{+}=\max (I, 0)$ is the positive increment; and
$I_{-}=\max (-I, 0)$ the nagative increment.

Assumptions.

- $E|I|<\infty$.
- Transience: $E I_{+}>E I_{-}$.

Theorem 5 (GMS, Volkov-Skevi, B.)
Let $f_{c}=E I_{-} / E I_{+} \in[0,1)$. Then

$$
\hat{F}_{n} \rightarrow F_{\infty}:=C D F \text { of } U\left[f_{c}, 1\right] \text {, uniformly, a.s. }
$$

If I is deterministic (that is population grows deterministically), this is Glivenko-Cantelli.

GMS Law of Large Numbers

Notation.

- $I \stackrel{\text { dist }}{=}$ Incement of random walk.
- $I=I_{+}-I_{-}$where,
$I_{+}=\max (I, 0)$ is the positive increment; and
$I_{-}=\max (-I, 0)$ the nagative increment.

Assumptions.

- $E|I|<\infty$.
- Transience: $E I_{+}>E I_{-}$.

Theorem 5 (GMS, Volkov-Skevi, B.)
Let $f_{c}=E I_{-} / E I_{+} \in[0,1)$. Then

$$
\hat{F}_{n} \rightarrow F_{\infty}:=C D F \text { of } U\left[f_{c}, 1\right], \text { uniformly, a.s. }
$$

If l is deterministic (that is population grows deterministically), this is Glivenko-Cantelli.

GMS Law of Large Numbers

Notation.

- $I \stackrel{\text { dist }}{=}$ Incement of random walk.
- $I=I_{+}-I_{-}$where,
$I_{+}=\max (I, 0)$ is the positive increment; and
$I_{-}=\max (-I, 0)$ the nagative increment.

Assumptions.

- $E|I|<\infty$.
- Transience: $E I_{+}>E I_{-}$.

Theorem 5 (GMS, Volkov-Skevi, B.)
Let $f_{c}=E I_{-} / E I_{+} \in[0,1)$. Then

$$
\hat{F}_{n} \rightarrow F_{\infty}:=C D F \text { of } U\left[f_{c}, 1\right], \text { uniformly, a.s. }
$$

If I is deterministic (that is population grows deterministically), this is Glivenko-Cantelli.

GMS LLN

Idea of Proof

- Size of population with fitness $\leq f$ is reflected random walk with drift
- If $f>f_{c}$, there exists finite time after which there will always be a species with lower fitness.
- Therefore, the proportion of species with fitness $>f_{c}$ which will be eliminated tends to 0 .

GMS LLN

Idea of Proof

- Size of population with fitness $\leq f$ is reflected random walk with drift $f E I_{+}-E I_{-}$.
- Positive recurrent if $f<f_{c}$
- If $\bar{f}>\vec{f}_{c}$, there exists finite time after which there will always be a species with lower fitness.
- Therefore, the proportion of species with fitness $>f_{c}$ which will be eliminated tends to 0 .

GMS LLN

Idea of Proof

- Size of population with fitness $\leq f$ is reflected random walk with drift $f E I_{+}-E I_{-}$.
- Positive recurrent if $f<f_{c}$
- If $\bar{f}>\vec{f}_{c}$, there exists finite time after which there will always be a species with lower fitness.
- Therefore, the proportion of species with fitness $>f_{c}$ which will be eliminated tends to 0 .

GMS LLN

Idea of Proof

- Size of population with fitness $\leq f$ is reflected random walk with drift $f E I_{+}-E I_{-}$.
- Transient if $f>f_{c}$
- Positive recurrent if $f<f_{c}$
- If $f>f_{c}$, there exists finite time after which there will always be a species with lower fitness.
- Therefore, the proportion of species with fitness $>f_{c}$ which will be eliminated tends to 0 .

GMS LLN

Idea of Proof

- Size of population with fitness $\leq f$ is reflected random walk with drift $f E I_{+}-E I_{-}$.
- Transient if $f>f_{c}$
- Null recurrent if $f=f_{c}$
- Positive recurrent if $f<f_{c}$
- If $f>f_{c}$, there exists finite time after which there will always be a species with lower fitness.
- Therefore, the proportion of species with fitness $>f_{c}$ which will be eliminated tends to 0 .

GMS LLN

Idea of Proof

- Size of population with fitness $\leq f$ is reflected random walk with drift $f E I_{+}-E I_{-}$.
- Transient if $f>f_{c}$
- Null recurrent if $f=f_{c}$
- Positive recurrent if $f<f_{c}$
- If $f>f_{c}$, there exists finite time after which there will always be a species with lower fitness.
- Therefore, the proportion of species with fitness $>f_{c}$ which will be eliminated tends to 0 .

GMS LLN

Idea of Proof

- Size of population with fitness $\leq f$ is reflected random walk with drift $f E I_{+}-E I_{-}$.
- Transient if $f>f_{c}$
- Null recurrent if $f=f_{c}$
- Positive recurrent if $f<f_{c}$
- If $f>f_{c}$, there exists finite time after which there will always be a species with lower fitness.
- Therefore, the proportion of species with fitness $>f_{c}$ which will be eliminated tends to 0 .

GMS LLN

Idea of Proof

- Size of population with fitness $\leq f$ is reflected random walk with drift $f E I_{+}-E I_{-}$.
- Transient if $f>f_{c}$
- Null recurrent if $f=f_{c}$
- Positive recurrent if $f<f_{c}$
- If $f>f_{c}$, there exists finite time after which there will always be a species with lower fitness.
- Therefore, the proportion of species with fitness $>f_{c}$ which will be eliminated tends to 0 .

GMS Central Limit Theorem

Let

$$
\hat{\Delta}_{n}=\hat{F}_{n}-F_{\infty} .
$$

Then we know that $\hat{\Delta}_{n}$ converges to 0 , uniformly, a.s.
Next, we look at fluctuations.
Assumption

Processes appearing in limit

- W_{1} standard BM , and the corresponding bridge Br_{1}.

$$
\operatorname{Br}_{1}(f):=W_{1}(f)-f W_{1}(1) .
$$

- If $f_{c}=0$, choose $\widetilde{W}_{1} \equiv 0$.
- If $f_{c}>0: \widetilde{W}_{1}$ standard BM derived from W_{1} as follows - $U \sim U\left[f_{c}, 1\right]$, independent of W_{1}.
 - An "interval" \widetilde{A}_{t} of length $\left(1-f_{c}\right) t$, shifted by U
 - $\widetilde{W}_{1}(t):=\frac{1}{\sqrt{f_{c}\left(1-f_{c}\right)}}\left(\left(1-f_{c}\right) W_{1}\left(f_{c} t\right)+f_{c} \int \mathbf{1}_{\bar{A}_{t}}(s) d W_{1}(s)\right)$
$\longleftarrow+{ }^{c t} \longrightarrow \quad \leftarrow^{(a-6) t-{ }^{(6)}}$
- W_{2}, standard $B M$, independent of W_{1}, U.

GMS Central Limit Theorem

Let

$$
\hat{\Delta}_{n}=\hat{F}_{n}-F_{\infty} .
$$

Then we know that $\hat{\Delta}_{n}$ converges to 0 , uniformly, a.s.
Next, we look at fluctuations.

Assumption

Processes appearing in limit

- W_{1} standard $B M$, and the corresponding bridge Br_{1}.

$$
\operatorname{Br}_{1}(f):=W_{1}(f)-f W_{1}(1)
$$

- If $f_{c}=0$, choose $\widetilde{W}_{1} \equiv 0$.
- If $f_{C}>0: \widetilde{M / 1}$ standard BM derived from W_{1} as follows $\Rightarrow U \sim U\left[f_{c}, 1\right]$, independent of W_{1} - An "interval" A_{t} of length $\left(1-f_{c}\right) t$, shifted by U

- W_{2}, standard BM , independent of W_{1}, U

GMS Central Limit Theorem

Let

$$
\hat{\Delta}_{n}=\hat{F}_{n}-F_{\infty} .
$$

Then we know that $\hat{\Delta}_{n}$ converges to 0 , uniformly, a.s.
Next, we look at fluctuations.
Assumption

$$
E\left(I^{2}\right)<\infty .
$$

Processes appearing in limit

- W_{1} standard BM , and the corresponding bridge Br_{1}

$$
\operatorname{Br}_{1}(f):=W_{1}(f)-f W_{1}(1) .
$$

- If $f_{c}=0$, choose $\widetilde{W}_{1} \equiv 0$.
- If $f_{C}>0: \widetilde{M / 1}$ standard $B M$ derived from W_{1} as follows $\Rightarrow U \sim U\left[f_{c}, 1\right]$, independent of W_{1} - An "interval" A_{t} of length $\left(1-f_{c}\right) t$, shifted by U

- W_{2}, standard $B M$, independent of W_{1}, U

GMS Central Limit Theorem

Let

$$
\hat{\Delta}_{n}=\hat{F}_{n}-F_{\infty} .
$$

Then we know that $\hat{\Delta}_{n}$ converges to 0 , uniformly, a.s.
Next, we look at fluctuations.
Assumption

$$
E\left(I^{2}\right)<\infty .
$$

Processes appearing in limit

- W_{1} standard BM , and the corresponding bridge Br_{1} :

$$
\operatorname{Br}_{1}(f):=W_{1}(f)-f W_{1}(1)
$$

- If $f_{c}=0$, choose $\widetilde{W}_{1} \equiv 0$.
- If $f_{c}>0: \widetilde{W}_{1}$ standard BM derived from W_{1} as follows:
- $U \sim U\left[f_{c}, 1\right]$, independent of W_{1}.
- An "interval" \widetilde{A}_{t} of length $\left(1-f_{c}\right) t$, shifted by U.

- W_{2}, standard $B M$, independent of W_{1}, U.

GMS CLT

For a path $\omega \in D[0,1]$, let $\Psi(\omega):=\omega(1)-\inf _{0 \leq t \leq 1} \omega(t)$
Theorem 6 (B.)
$\sqrt{n}\binom{\left.\widehat{\Delta}_{n}(\cdot)\right|_{\left(f_{c}, 1\right]}}{\widehat{\Delta}_{n}\left(f_{c}\right)} \Rightarrow \frac{1}{E I_{+}}\binom{\overbrace{\sigma_{1} B r_{1}+\sigma_{2} W_{2}(1)\left(1-F_{\infty}\right)}^{\text {Gaussian process }}}{\underbrace{\Psi\left(\widetilde{\sigma}_{1} \widehat{W}_{1}+\sigma_{2} W_{2}\right)}_{\text {Positive } R V}}$,
with $\sigma_{1}=\sqrt{E I_{+}}, \widetilde{\sigma}_{1}=\sqrt{f_{c}\left(1-f_{c}\right) E I_{+}}, \sigma_{2}=\sqrt{f_{c}^{2} E\left(I_{+}^{2}\right)+E\left(I_{-}^{2}\right)}$, and the convergence is $D\left(f_{c}, 1\right] \times \mathbb{R}$.

Marginals

GMS CLT

For a path $\omega \in D[0,1]$, let $\Psi(\omega):=\omega(1)-\inf _{0 \leq t \leq 1} \omega(t)$
Theorem 6 (B.)
$\sqrt{n}\binom{\left.\widehat{\Delta}_{n}(\cdot)\right|_{\left(f_{c}, 1\right]}}{\widehat{\Delta}_{n}\left(f_{c}\right)} \Rightarrow \frac{1}{E I_{+}}\binom{\overbrace{\sigma_{1} B r_{1}+\sigma_{2} W_{2}(1)\left(1-F_{\infty}\right)}^{\text {Gaussian process }}}{\underbrace{\Psi\left(\widetilde{\sigma}_{1} \widehat{W}_{1}+\sigma_{2} W_{2}\right)}_{\text {Positive } R V}}$,
with $\sigma_{1}=\sqrt{E I_{+}}, \tilde{\sigma}_{1}=\sqrt{f_{c}\left(1-f_{c}\right) E I_{+}}, \sigma_{2}=\sqrt{f_{c}^{2} E\left(I_{+}^{2}\right)+E\left(I_{-}^{2}\right)}$, and the convergence is $D\left(f_{c}, 1\right] \times \mathbb{R}$.
Marginals

$$
\sqrt{n} \widehat{\Delta}_{n}(f) \Rightarrow \begin{cases}\sigma(f \wedge 1) N(0,1) & f>f_{c} \\ \sigma\left(f_{c}\right)|N(0,1)| & f=f_{c} \\ 0 & f<f_{c}\end{cases}
$$

where $\sigma(f):=\frac{1}{E\left(I_{+}\right)} \sqrt{f(1-f) E\left(I_{+}\right)+\left(\frac{1-f}{1-f_{c}}\right)^{2}\left(f_{c}^{2} E\left(I_{+}^{2}\right)+E\left(I_{-}^{2}\right)\right)}$

GMS CLT Discussion

Recall

$$
\sqrt{n}\binom{\left.\widehat{\Delta}_{n}(\cdot)\right|_{\left(f_{c}, 1\right]}}{\widehat{\Delta}_{n}\left(f_{c}\right)} \Rightarrow \frac{1}{E I_{+}}\binom{\sigma_{1} \mathrm{Br}_{1}+\sigma_{2} W_{2}(1) g}{\psi(}
$$

Origin of terms

1. Bridge arising from empirical process associated with births.

Only surviving term when $f_{c}=0$, recovering classical CLT for empirical processes.
2. Fluctuations from bridge due to randomness of births, and existence of deaths
3. Population with fitness $\leq f_{c}$ is null recurrent random walk above its running minimum, hence ψ.
Note that it's of order \sqrt{n}, hence only appearing in CLT.
a. Scaling limit for the births.
b. Fluctuations from randomness of births, and negative increments.

Discontinuity

- The limit process is not in $D\left[f_{C}, 1\right]$, because its distribution at f_{C} is
$\sigma\left(f_{c}\right)|N(0,1)|>0$ a.s., while its limit from the right is $\sigma\left(f_{c}\right) N(0,1)$.
- The standard normal random variables above are NOT the same.

GMS CLT Discussion

Recall

$$
\sqrt{n}\binom{\left.\widehat{\Delta}_{n}(\cdot)\right|_{\left(f_{c}, 1\right]}}{\widehat{\Delta}_{n}\left(f_{c}\right)} \Rightarrow \frac{1}{E I_{+}}\binom{\sigma_{1} \mathrm{Br}_{1}+\sigma_{2} W_{2}(1) g}{\psi(}
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_{c}=0$, recovering classical CLT for empirical processes.
2. Fluctuations from bridge due to randomness of births, and existence of deaths
3. Population with fitness $\leq f_{c}$ is null recurrent random walk above its running minimum, hence Ψ.
Note that it's of order \sqrt{n}, hence only appearing in CLT.
a. Scaling limit for the births.
b. Fluctuations from randomness of births, and negative increments.

Discontinuity

\Rightarrow The limit process is not in $D\left[f_{c}, 1\right]$, because its distribution at f_{c} is $\sigma\left(f_{c}\right)|N(0,1)|>0$ a.s., while its limit from the right is $\sigma\left(f_{c}\right) N(0,1)$.

- The standard normal random variables above are NOT the same.

GMS CLT Discussion

Recall

$$
\sqrt{n}\binom{\left.\widehat{\Delta}_{n}(\cdot)\right|_{\left(f_{c}, 1\right]}}{\widehat{\Delta}_{n}\left(f_{c}\right)} \Rightarrow \frac{1}{E I_{+}}\binom{\sigma_{1} \operatorname{Br}_{1}+\sigma_{2} W_{2}(1) g}{\psi(}
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_{c}=0$, recovering classical CLT for empirical processes.
2. Fluctuations from bridge due to randomness of births, and existence of deaths
3. Population with fitness $\leq f_{c}$ is null recurrent random walk above its running minimum, hence Ψ.
Note that it's of order \sqrt{n}, hence only appearing in CLT.
a. Scaling limit for the births.
b. Fluctuations from randomness of births, and negative increments.

Discontinuity

\Rightarrow The limit process is not in $D\left[f_{C}, 1\right]$, because its distribution at f_{C} is $\sigma\left(f_{c}\right)|N(0,1)|>0$ a.s., while its limit from the right is $\sigma\left(f_{c}\right) N(0,1)$.

- The standard normal random variables above are NOT the same.

GMS CLT Discussion

Recall

$$
\sqrt{n}\binom{\left.\widehat{\Delta}_{n}(\cdot)\right|_{\left(f_{c}, 1\right]}}{\widehat{\Delta}_{n}\left(f_{c}\right)} \Rightarrow \frac{1}{E I_{+}}\binom{\sigma_{1} \mathrm{Br}_{1}+\sigma_{2} W_{2}(1) g}{\psi\left(\sigma_{1} W_{1}+\sigma_{2} W_{2}\right)}
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_{c}=0$, recovering classical CLT for empirical processes.
2. Fluctuations from bridge due to randomness of births, and existence of deaths
3. Population with fitness $\leq f_{c}$ is null recurrent random walk above its running minimum, hence Ψ.
Note that it's of order \sqrt{n}, hence only appearing in CLT.
a. Scaling limit for the births.
b. Fluctuations from randomness of births, and negative increments.

Discontinuity

- The limit process is not in $D\left[f_{c}, 1\right]$, because its distribution at f_{C} is $\sigma\left(f_{c}\right)|N(0,1)|>0$ a.s., while its limit from the right is $\sigma\left(f_{c}\right) N(0,1)$ - The standard normal random variables above are NOT the same.

GMS CLT Discussion

Recall

$$
\sqrt{n}\binom{\left.\widehat{\Delta}_{n}(\cdot)\right|_{\left(f_{c}, 1\right]}}{\widehat{\Delta}_{n}\left(f_{c}\right)} \Rightarrow \frac{1}{E I_{+}}\binom{\sigma_{1} \mathrm{Br}_{1}+\sigma_{2} W_{2}(1) g}{\Psi\left(\widetilde{\sigma}_{1} W_{1}+\sigma_{2} W_{2}\right)}
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_{c}=0$, recovering classical CLT for empirical processes.
2. Fluctuations from bridge due to randomness of births, and existence of deaths
3. Population with fitness $\leq f_{c}$ is null recurrent random walk above its running minimum, hence Ψ.
Note that it's of order \sqrt{n}, hence only appearing in CLT.
a. Scaling limit for the births.
b. Fluctuations from randomness of births, and negative increments.

Discontinuity

- The limit process is not in $D\left[f_{c}, 1\right]$, because its distribution at f_{c} is
- The standard normal random variables above are NOT the same.

GMS CLT Discussion

Recall

$$
\sqrt{n}\binom{\left.\widehat{\Delta}_{n}(\cdot)\right|_{\left(f_{c}, 1\right]}}{\widehat{\Delta}_{n}\left(f_{c}\right)} \Rightarrow \frac{1}{E I_{+}}\binom{\sigma_{1} \mathrm{Br}_{1}+\sigma_{2} W_{2}(1) g}{\Psi\left(\widetilde{\sigma}_{1} \widetilde{W}_{1}+\sigma_{2} W_{2}\right)}
$$

Origin of terms

1. Bridge arising from empirical process associated with births.

Only surviving term when $f_{c}=0$, recovering classical CLT for empirical processes.
2. Fluctuations from bridge due to randomness of births, and existence of deaths
3. Population with fitness $\leq f_{c}$ is null recurrent random walk above its running minimum, hence Ψ.
Note that it's of order \sqrt{n}, hence only appearing in CLT.
a. Scaling limit for the births.
b. Fluctuations from randomness of births, and negative increments.

Discontinuity

- The limit process is not in $D\left[f_{c}, 1\right]$, because its distribution at f_{c} is
- The standard normal random variables above are NOT the same.

GMS CLT Discussion

Recall

$$
\sqrt{n}\binom{\left.\widehat{\Delta}_{n}(\cdot)\right|_{\left(f_{c}, 1\right]}}{\widehat{\Delta}_{n}\left(f_{c}\right)} \Rightarrow \frac{1}{E I_{+}}\binom{\sigma_{1} \mathrm{Br}_{1}+\sigma_{2} W_{2}(1) g}{\Psi\left(\widetilde{\sigma}_{1} \widetilde{W}_{1}+\sigma_{2} W_{2}\right)}
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_{c}=0$, recovering classical CLT for empirical processes.
2. Fluctuations from bridge due to randomness of births, and existence of deaths
3. Population with fitness $\leq f_{c}$ is null recurrent random walk above its running minimum, hence Ψ. Note that it's of order \sqrt{n}, hence only appearing in CLT.
a. Scaling limit for the births.
b. Fluctuations from randomness of births, and negative increments.

Discontinuity

\Rightarrow The limit process is not in $D\left[f_{C}, 1\right]$, because its distribution at f_{C} is

- The standard normal random variables above are NOT the same.

GMS CLT Discussion

Recall

$$
\sqrt{n}\binom{\left.\widehat{\Delta}_{n}(\cdot)\right|_{\left(f_{c}, 1\right]}}{\widehat{\Delta}_{n}\left(f_{c}\right)} \Rightarrow \frac{1}{E I_{+}}\binom{\sigma_{1} \mathrm{Br}_{1}+\sigma_{2} W_{2}(1) g}{\Psi\left(\widetilde{\sigma}_{1} \widetilde{W}_{1}+\sigma_{2} W_{2}\right)}
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_{c}=0$, recovering classical CLT for empirical processes.
2. Fluctuations from bridge due to randomness of births, and existence of deaths
3. Population with fitness $\leq f_{c}$ is null recurrent random walk above its running minimum, hence Ψ. Note that it's of order \sqrt{n}, hence only appearing in CLT.
a. Scaling limit for the births.
b. Fluctuations from randomness of births, and negative increments.

Discontinuity

- The limit process is not in $D\left[f_{c}, 1\right]$, because its distribution at f_{c} is $\sigma\left(f_{c}\right)|N(0,1)|>0$ a.s., while its limit from the right is $\sigma\left(f_{c}\right) N(0,1)$.
- The standard normal random variables above are NOT the same.

GMS CLT Discussion

Recall

$$
\sqrt{n}\binom{\left.\widehat{\Delta}_{n}(\cdot)\right|_{\left(f_{c}, 1\right]}}{\widehat{\Delta}_{n}\left(f_{c}\right)} \Rightarrow \frac{1}{E I_{+}}\binom{\sigma_{1} \mathrm{Br}_{1}+\sigma_{2} W_{2}(1) g}{\Psi\left(\widetilde{\sigma}_{1} \widetilde{W}_{1}+\sigma_{2} W_{2}\right)}
$$

Origin of terms

1. Bridge arising from empirical process associated with births. Only surviving term when $f_{c}=0$, recovering classical CLT for empirical processes.
2. Fluctuations from bridge due to randomness of births, and existence of deaths
3. Population with fitness $\leq f_{c}$ is null recurrent random walk above its running minimum, hence Ψ. Note that it's of order \sqrt{n}, hence only appearing in CLT.
a. Scaling limit for the births.
b. Fluctuations from randomness of births, and negative increments.

Discontinuity

- The limit process is not in $D\left[f_{c}, 1\right]$, because its distribution at f_{c} is $\sigma\left(f_{c}\right)|N(0,1)|>0$ a.s., while its limit from the right is $\sigma\left(f_{c}\right) N(0,1)$.
- The standard normal random variables above are NOT the same.

GMS with selection

Assume

$$
P(I=1)=p=1-P(I=-1) .
$$

New feature

- At birth the individual obtains
- At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- Probability of new site is pr.
\Rightarrow Probability of eliminating a site is $1-p$.

Conclusion

1. Number of sites coincides with GMS with

$$
P(I=1)=p r, P(I=-1)=1-p \text { and } P(I=0)=1-p r-(1-p)
$$

2. The system is transient if and only if $p r>(1-p)$.
3. In this case $f_{C}=\frac{1-p}{p r}$, and the asymptotic site fitness distribution is $U\left[f_{c}, 1\right]$.

GMS with selection

Assume

$$
P(I=1)=p=1-P(I=-1) .
$$

New feature

- At birth the individual obtains
- At death, eliminate all species with lowest fitness.

We refer to the nonulation with fixed fitness as a site

Observation

- Probability of new site is pr.
\Rightarrow Probability of eliminating a site is $1-p$.

Conclusion

1. Number of sites coincides with GMS with

$$
P(I=1)=p r, P(I=-1)=1-p \text { and } P(I=0)=1-p r-(1-p)
$$

2. The system is transient if and only if $p r>(1-p)$
3. In this case $f_{C}=\frac{1-p}{p r}$, and the asymptotic site fitness distribution is $U\left[f_{C}, 1\right]$.

GMS with selection

Assume

$$
P(I=1)=p=1-P(I=-1) .
$$

New feature

- At birth the individual obtains

```
w/prob 1-r, an existing fitness, uniformly among existing fitnesses, or new one if
    population is zero.
```

- At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- Probability of new site is pr.
- Probability of eliminating a site is 1 - p.

Conclusion

1. Number of sites coincides with GMS with
\square
2. The system is transient if and only if pr $>(1-p)$.
3. In this case $f_{c}=\frac{1-p}{p r}$, and the asymptotic site fitness distribution is $\cup\left[f_{c}, 1\right]$.

GMS with selection

Assume

$$
P(I=1)=p=1-P(I=-1) .
$$

New feature

- At birth the individual obtains
- $w /$ prob r new $U[0,1]$ fitness.
- w/prob $1-r$, an existing fitness, uniformly among existing fitnesses, or new one if population is zero.
- At death eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- Probability of new site is pr.
\Rightarrow Probability of eliminating a site is $1-p$.

Conclusion

1. Number of sites coincides with GMS with
\square
2. The system is transient if and only if $p r>(1-p)$
3. In this case $f_{C}=\frac{1-p}{p r}$, and the asymptotic site fitness distribution is $U\left[f_{C}, 1\right]$.

GMS with selection

Assume

$$
P(I=1)=p=1-P(I=-1) .
$$

New feature

- At birth the individual obtains
- $w /$ prob r new $U[0,1]$ fitness.
- w/prob $1-r$, an existing fitness, uniformly among existing fitnesses, or new one if population is zero.
- At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- Probability of new site is pr.
- Probability of eliminating a site is $1-p$.

Conclusion

1. Number of sites coincides with GMS with
\square
2. The system is transient if and only if $p r>(1-p)$
3. In this case $f_{c}=\frac{1-p}{p r}$, and the asymptotic site fitness distribution is $\cup\left[f_{c}, 1\right]$.

GMS with selection

Assume

$$
P(I=1)=p=1-P(I=-1) .
$$

New feature

- At birth the individual obtains
- w/prob r new $U[0,1]$ fitness.
- w/prob $1-r$, an existing fitness, uniformly among existing fitnesses, or new one if population is zero.
- At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- Probability of new site is pr.
\Rightarrow Probability of eliminating a site is $1-p$.

Conclusion

1. Number of sites coincides with GMS with $P(I=1)=p r, P(I=-1)=1-p$ and $P(I=0)=1-p r-(1-p)$.
2. The system is transient if and only if $p r>(1-p)$.
3. In this case $f_{c}=\frac{1-p}{p r}$, and the asymptotic site fitness distribution is $U\left[f_{c}, 1\right]$

GMS with selection

Assume

$$
P(I=1)=p=1-P(I=-1) .
$$

New feature

- At birth the individual obtains
- w/prob r new $U[0,1]$ fitness.
- w/prob $1-r$, an existing fitness, uniformly among existing fitnesses, or new one if population is zero.
- At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- Probability of new site is pr.
- Probability of eliminating a site is $1-p$.

Conclusion

1. Number of sites coincides with GMS with
2. The system is transient if and only if $p r>(1-p)$.
3. In this case $f_{c}=\frac{1-p}{p r}$, and the asymptotic site fitness distribution is $\mathrm{U}\left[f_{c}, 1\right]$.

GMS with selection

Assume

$$
P(I=1)=p=1-P(I=-1) .
$$

New feature

- At birth the individual obtains
- $w /$ prob r new $U[0,1]$ fitness.
- w/prob $1-r$, an existing fitness, uniformly among existing fitnesses, or new one if population is zero.
- At death, eliminate all species with lowest fitness.

We refer to the population with fixed fitness as a site.

Observation

- Probability of new site is pr.
- Probability of eliminating a site is $1-p$.

Conclusion

1. Number of sites coincides with GMS with $P(I=1)=p r, P(I=-1)=1-p$ and $P(I=0)=1-p r-(1-p)$.
2. The system is transient if and only if $p r>(1-p)$.
3. In this case $f_{c}=\frac{1-p}{p r}$, and the asymptotic site fitness distribution is $\mathrm{U}\left[f_{c}, 1\right]$.

GMS w/Selection

What is site size distribution ?

Let \hat{H}_{n} denote the empirical distribution of sites and their respective fitness:

$$
\hat{H}_{n}(A \times B)=\frac{\# \text { sites whose size is in } A \text { and whose fitness is in } B}{\# \text { sites }} .
$$

Theorem 7 (Schinazi-B. '15)

$$
\hat{H}_{n} \rightarrow \operatorname{Geom}\left(\frac{p r-(1-p)}{p-(1-p)}\right) \otimes U\left[f_{c}, 1\right], \text { a.s. }
$$

Figure: Empirical dist of site sizes $\left(p=0.8, r=0.4, n=10^{6}\right)$ and corresponding Geom.

GMS w/selection

Why Geometric?
Fix site size $k>1$. Consider number of sites of size k with fitness $>f_{c}$.
Assume the proportion of such sites converges to $H_{\infty}(k)$.

- Number of such sites grows at speed

$$
p(1-r)\left(H_{\infty}(k-1)-H_{\infty}(k)\right)+o(1)=H_{\infty}(k) *(p r-(1-p))
$$

Then change in the number of sites of size k occurs only at - At birth

- At death, but occurs only finitely often.
- Equality because \# sites grows at speed pr - $(1-p)$

This equation guarantees geometric decay.
The problem
Proving that the assumption actually holds.

- Easy calculus exercise if pr $>\frac{1}{2}$.
- Otherwise: use "mean reversion" away from linear curve.

GMS w/selection

Why Geometric?
Fix site size $k>1$. Consider number of sites of size k with fitness $>f_{c}$.
Assume the proportion of such sites converges to $H_{\infty}(k)$.

- Number of such sites grows at speed

$$
p(1-r)\left(H_{\infty}(k-1)-H_{\infty}(k)\right)+o(1)=H_{\infty}(k) *(p r-(1-p))
$$

Then change in the number of sites of size k occurs only at

- At birth
- Increases by 1 when new individual selects a site of size k - 1
- Decreases by 1 when new individual selects a site of size k.
- At death, but occurs only finitely often
- Equality because \# sites grows at speed $p r-(1-p)$

This equation guarantees geometric decay.
The problem
Proving that the assumption actually holds.

- Easy calculus exercise if pr $>\frac{1}{2}$.
- Otherwise: use "mean reversion" away from linear curve.

GMS w/selection

Why Geometric?
Fix site size $k>1$. Consider number of sites of size k with fitness $>f_{c}$.
Assume the proportion of such sites converges to $H_{\infty}(k)$.

- Number of such sites grows at speed

$$
p(1-r)\left(H_{\infty}(k-1)-H_{\infty}(k)\right)+o(1)=H_{\infty}(k) *(p r-(1-p))
$$

Then change in the number of sites of size k occurs only at

- At birth
- Increases by 1 when new individual selects a site of size $k-1$.
- Decreases by 1 when new individual selects a site of size k
- At death, but occurs only finitely often.
- Equality because \# sites grows at speed pr $-(1-p)$

This equation guarantees geometric decay.
The problem
Proving that the assumption actually holds.

- Easy calculus exercise if pr $>\frac{1}{2}$.
- Otherwise: use "mean reversion" away from linear curve.

GMS w/selection

Why Geometric?
Fix site size $k>1$. Consider number of sites of size k with fitness $>f_{c}$.
Assume the proportion of such sites converges to $H_{\infty}(k)$.

- Number of such sites grows at speed

$$
p(1-r)\left(H_{\infty}(k-1)-H_{\infty}(k)\right)+o(1)=H_{\infty}(k) *(p r-(1-p))
$$

Then change in the number of sites of size k occurs only at

- At birth
- Increases by 1 when new individual selects a site of size $k-1$.
- Decreases by 1 when new individual selects a site of size k.
- At death, but occurs only finitely often
- Equality because \# sites grows at speed pr - $(1-p)$.

This equation guarantees geometric decay.
The problem
Proving that the assumption actually holds.

- Easy calculus exercise if $p r>\frac{1}{2}$.
- Otherwise: use "mean reversion" away from linear curve.

GMS w/selection

Why Geometric?

Fix site size $k>1$. Consider number of sites of size k with fitness $>f_{c}$.
Assume the proportion of such sites converges to $H_{\infty}(k)$.

- Number of such sites grows at speed

$$
p(1-r)\left(H_{\infty}(k-1)-H_{\infty}(k)\right)+o(1)
$$

Then change in the number of sites of size k occurs only at

- At birth
- Increases by 1 when new individual selects a site of size $k-1$.
- Decreases by 1 when new individual selects a site of size k.
- At death, but occurs only finitely often.
- Equality because \# sites grows at speed pr - $(1-p)$.

This equation guarantees geometric decay.
The probiem
Proving that the assumption actually holds.

- Easy calculus exercise if pr $>\frac{1}{2}$.
- Otherwise: use "mean reversion" away from linear curve.

GMS w/selection

Why Geometric ?

Fix site size $k>1$. Consider number of sites of size k with fitness $>f_{c}$.
Assume the proportion of such sites converges to $H_{\infty}(k)$.

- Number of such sites grows at speed

$$
p(1-r)\left(H_{\infty}(k-1)-H_{\infty}(k)\right)+o(1)=H_{\infty}(k) *(p r-(1-p))
$$

Then change in the number of sites of size k occurs only at

- At birth
- Increases by 1 when new individual selects a site of size $k-1$.
- Decreases by 1 when new individual selects a site of size k.
- At death, but occurs only finitely often.
- Equality because $\#$ sites grows at speed $p r-(1-p)$.

This equation guarantees geometric decay.

The problem
Proving that the assumption actually holds.

- Easy calculus exercise if pr $>\frac{1}{2}$.
- Otherwise: use "mean reversion" away from linear curve.

GMS w/selection

Why Geometric?

Fix site size $k>1$. Consider number of sites of size k with fitness $>f_{c}$.
Assume the proportion of such sites converges to $H_{\infty}(k)$.

- Number of such sites grows at speed

$$
p(1-r)\left(H_{\infty}(k-1)-H_{\infty}(k)\right)+o(1)=H_{\infty}(k) *(p r-(1-p))
$$

Then change in the number of sites of size k occurs only at

- At birth
- Increases by 1 when new individual selects a site of size $k-1$.
- Decreases by 1 when new individual selects a site of size k.
- At death, but occurs only finitely often.
- Equality because $\#$ sites grows at speed $p r-(1-p)$.

This equation guarantees geometric decay.
The problem
Proving that the assumption actually holds.

- Easy calculus exercise if pr $>\frac{1}{2}$
- Otherwise: use "mean reversion" away from linear curve.

GMS w/selection

Why Geometric?

Fix site size $k>1$. Consider number of sites of size k with fitness $>f_{c}$.
Assume the proportion of such sites converges to $H_{\infty}(k)$.

- Number of such sites grows at speed

$$
p(1-r)\left(H_{\infty}(k-1)-H_{\infty}(k)\right)+o(1)=H_{\infty}(k) *(p r-(1-p))
$$

Then change in the number of sites of size k occurs only at

- At birth
- Increases by 1 when new individual selects a site of size $k-1$.
- Decreases by 1 when new individual selects a site of size k.
- At death, but occurs only finitely often.
- Equality because $\#$ sites grows at speed $p r-(1-p)$.

This equation guarantees geometric decay.

The problem

Proving that the assumption actually holds.

- Easy calculus exercise if $p r>\frac{1}{2}$.
- Otherwise: use "mean reversion" away from linear curve.

GMS w/selection

Why Geometric ?

Fix site size $k>1$. Consider number of sites of size k with fitness $>f_{c}$.
Assume the proportion of such sites converges to $H_{\infty}(k)$.

- Number of such sites grows at speed

$$
p(1-r)\left(H_{\infty}(k-1)-H_{\infty}(k)\right)+o(1)=H_{\infty}(k) *(p r-(1-p))
$$

Then change in the number of sites of size k occurs only at

- At birth
- Increases by 1 when new individual selects a site of size $k-1$.
- Decreases by 1 when new individual selects a site of size k.
- At death, but occurs only finitely often.
- Equality because $\#$ sites grows at speed $p r-(1-p)$.

This equation guarantees geometric decay.

The problem

Proving that the assumption actually holds.

- Easy calculus exercise if pr $>\frac{1}{2}$.
- Otherwise: use "mean reversion" away from linear curve.

GMS w/selection

Why Geometric?

Fix site size $k>1$. Consider number of sites of size k with fitness $>f_{c}$.
Assume the proportion of such sites converges to $H_{\infty}(k)$.

- Number of such sites grows at speed

$$
p(1-r)\left(H_{\infty}(k-1)-H_{\infty}(k)\right)+o(1)=H_{\infty}(k) *(p r-(1-p))
$$

Then change in the number of sites of size k occurs only at

- At birth
- Increases by 1 when new individual selects a site of size $k-1$.
- Decreases by 1 when new individual selects a site of size k.
- At death, but occurs only finitely often.
- Equality because $\#$ sites grows at speed $p r-(1-p)$.

This equation guarantees geometric decay.

The problem

Proving that the assumption actually holds.

- Easy calculus exercise if $p r>\frac{1}{2}$.
- Otherwise: use "mean reversion" away from linear curve.

GMS w/selection

Why Geometric?

Fix site size $k>1$. Consider number of sites of size k with fitness $>f_{c}$.
Assume the proportion of such sites converges to $H_{\infty}(k)$.

- Number of such sites grows at speed

$$
p(1-r)\left(H_{\infty}(k-1)-H_{\infty}(k)\right)+o(1)=H_{\infty}(k) *(p r-(1-p))
$$

Then change in the number of sites of size k occurs only at

- At birth
- Increases by 1 when new individual selects a site of size $k-1$.
- Decreases by 1 when new individual selects a site of size k.
- At death, but occurs only finitely often.
- Equality because \# sites grows at speed pr $-(1-p)$.

This equation guarantees geometric decay.

The problem

Proving that the assumption actually holds.

- Easy calculus exercise if $p r>\frac{1}{2}$.
- Otherwise: use "mean reversion" away from linear curve.

$T_{h_{a} n k} y^{O_{u}}$.

Ad: Markov chains REU at UConn this summer.
Details on our mathprograms.org page or on markov-chains-reu.math.uconn.edu

