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Introduction

Setup

I X = (Xn : n ∈ Z+) transient irreducible∗ MC on a countable state space S, and TF
p.

I Transience ⇒ lim
n→∞

Xn =∞, Px -a.s. for all x.

Can be more specific than just “∞” ?

Sometimes, yes, in a natural way.

Example

Take S = Z. For ε ∈ (0, 1) consider

p(x, y) =

{
1
2 (1 + ε(y − x)sgn(x)) |y − x| = 1

0 otherwise.

Then under Px ,
lim

n→∞
Xn = +∞ with probability px ∈ (0, 1),

and
lim

n→∞
Xn = −∞ with probabilility 1− px ∈ (0, 1).

That is,

there exists a {+∞,−∞}-valued nondegenerate random variable X∞, such that

lim
n→∞

Xn = X∞, Px−a.s..

Let’s try to develop some theory. 2/ 16
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First observations

What do we want ?

A metric compactification of S, S̄ = S ∪ ∂S̄, such that there exists a ∂S̄-valued random
variable X∞ so that

limn→∞Xn = X∞, Px -a.s., for all x.

So...

I When one completes a metric space it is natural to consider the completion as
equivalence classes of Cauchy sequences.

I Given a convergent sequence in S̄ whose elements are in S, the definition of Cauchy
sequence requires all sequences which are eventually the same to converge to same
limit.

I The collection of events which do not distinguish between paths which are
eventually the same is exactly the invariant σ-algebra I.

I = {A ∈ F∞ : θ−1A = A}.

I Thus, X∞ attains values in the set of equivalence classes of paths which are
eventually the same, and

I therefore for A ∈ I, the event {X∞ ∈ A} is synonymous with the event A.

Now recall the following.

I A function h : S → R is called p-harmonic if h = ph, that is

h(x) =
∑
y

p(x, y)h(y).

Equivalently, h(x) = Ex [h(X1)].

I If h is bounded, then h is p-harmonic if and only if (h(Xn) : n ∈ Z+) is a martingale.
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Poisson Boundary, take I

Let’s take a look at the distribution of X∞.

Fix o ∈ S such that o → x for all x ∈ S.

I For x ∈ S, let µx denote the distribution of X∞ under Px . Then

µx (A) = Px (X∞ ∈ A)

= Px (A) = Px (θ−1A)

=
∑
y

p(x, y)Py (A).

I That is, the function x → µx (A) = Px (A) is p-harmonic.

I Since o → x , we have n ∈ N such that pn(o, x) > 0. Thus, for every A ∈ I,

Po(A) ≥
∑
y

pn(o, y)Py (A) ≥ pn(o, x)Px (A)

⇒ µx � µo

I Thus, µx (A) =

∫
∂S̄

1A(ζ)K(x ; ζ)dµo(ζ), where K(x ; ·) = dµx
dµo

.

I Not hard to see (Funbini-Tonelli with the right choice of A), that K(·; ζ) is
p-harmonic (possibly except on a set of µo measure zero, but this can be
eliminated).

Summarizing, ∂S̄ is equipped with a probability measure µo and a collection of hamronic
functions indexed by ∂S̄, which together determine the probabilities of all invariant events.

The probability space (∂S̄, µo) is a first draft of the Poisson boundary.
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Bounded harmonic functions

Recall that dµx = K(x ; ·)dµo .

Let H∞(p) denote the linear space of bounded p-harmonic functions.

Note that H∞(p) is Banach space with the sup-norm.

Let u ∈ H∞(p). Then

I (u(Xn) : n ∈ Z+) is a bounded martingale.

I Therefore limn→∞ u(Xn) exists and is I-measurable.

I We can express the limit above as f (X∞) for some f ∈ L∞(µo).

That is,

u(x) = lim
n→∞

Ex [u(Xn)] = Ex [ lim
n→∞

u(Xn)]

= Ex [f (X∞)] = int∂S̄ f (ζ)dµx (ζ)

=

∫
∂S̄

f (ζ)K(x ; ζ)dµo(ζ).

Conversely, if f ∈ L∞(µo), then the RHS defines an element in H∞(p).
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Poisson Boundary, final version

We showed that for u ∈ H∞(p), we have a representation

u(x) =

∫
∂S̄

f (ζ)K(x ; ζ)dµo(ζ).

Is the presentation unique ?

A priori, no. Why ?

I We can have ζ 6= ζ′ such that K(·; ζ′) = K(·; ζ).

Solution: quotient out.

I We can have ζ′ such that K(·; ζ) is it self a convex combination of other K(·; ζ) or
even an integral of them.

Solution: restrict to those ζ such that K(·; ζ) is minimal.

A nonegative harmonic function u is minimal positive if whenever 0 ≤ v ≤ u is
positive harmonic then v = cu for some u.

The point is that the the collection K(·; ζ) is the set of extreme points of the
compact linear space of positive harmonic functions on S equal to 1 at o, and
therefore by Choquet’s theorem, each element in this compact space is an integral
(convex combination) of these elements with respect to a unique probability
measure.

The resulting probability space is called the Poisson boundary. We will not change
notation.
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Example

1. Example from Slide 2.

Let’s work backwards. Suppose that u ∈ H∞(p).

I Let τ` = inf{n ∈ Z+ : Xn = `}.
I Fix x and let `1, `2 > 0 such that −`1 < x < `2.

I Since (u(Xn) : n ∈ Z+) is a bounded martingale, optional stopping gives

u(x) = Ex [u(Xτ−`1
∧τ`2

)].

= u(−`1)Px (τ−`1
< τ`2

) + u(`2)Px (τ−`1
> τ`2

).

I Take `1 →∞ then `2 →∞ to obtain

u(x) = u(−∞)Px ( lim
n→∞

Xn = −∞) + u(+∞)Px ( lim
n→∞

Xn =∞).

Note that the existence of the limits of u at ±∞ is part of the statement.
Setting o = 0, the probabilities are both 1

2 .

I Summarizing:

I ∂S̄ = {+∞,−∞}.
I µo = 1

2 (δ−∞ + δ+∞).
I K(x ; ζ) = 2Px (limn→∞ Xn = ζ).
I Tu = (u(+∞), u(−∞)).
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Another example

2. RW on Abelian Group.

In general, if S is an Abelian group and p is a random walk on the group, then the
Poisson boundary consists of a single point.

Here is a concrete example that is easy to prove (the technique usually does not work).

I Suppose that S = Zd for d ≥ 3.

I Let

p(x, y) =

{
1

2d+1 y = x ± ei
1

2d+1 y = x.

I Given x = (x1, x2, . . . , xd ) ∈ Zd , it is not hard to construct two copies of the RW

on Zd , X 1,X 2 such that X 1
0 = x and X 2

0 = 0, and which meet a.s. at some time
τ <∞.

I Since (u(X 1
n ) : n ∈ Z+) ands (u(X 2

n ) : n ∈ Z+) are both bounded martingales,
optional stopping gives

u(x) = E [u(X 1
τ )] = E [u(X 2

τ )] = u(0).
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Conclusions of uniqueness

Once we have uniqueness, we have a mapping T : H∞(p)→ L∞(µo):

u(x) =

∫
∂S̄

K(x ; ζ)(Tu)(ζ)dµo(ζ).

The mapping T is

1. Linear.

2. One-to-one.

3. Onto.

4. An isometry from H∞(p), equipped with the sup-norm to L∞(µo).

Therefore H∞(p) can be identified with L∞(µo).

This brings us to the main topic.
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Motivation

In study of RW on groups one problem is to construct processes with given Poisson
boundary, up to isomorphism of probability spaces.

In the context of general Markov chains isomorphism of probability spaces is too strong
(e.g. Example 1. with different choices of o) This leads to the next question.

Problem. Find a mechanism for constructing MC with isomorphic space of bounded
Harmonic functions.

To some extent, this is more natural from a probabilistic perspective: this is what we
need to know in order to describe the limits at +∞.
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Transformed Markov Chains

Motivated by the work of Forghani and Kaimanovich on random walk on groups, the idea
would be to construct new processes from X through stopping times.

We do this as follows:

I Let τ be a stopping time for X . That is,

{τ ≤ n} ∈ σ(X0, . . . ,Xn), n ∈ Z+.

I By iterating τ we can obtain a sequence of stopping times:

τ0 = τ, τn+1 = τ ◦ θτn .

Write 〈τ〉 = {τ0, τ1, . . . }.
I With this sequence, one obtains a new process Y = (Yn : n ∈ Z+), defined through

Yn = Xτn .

I By the strong Markov property, this is also a Markov chain on S. with transition
function q.

Immediate observation:

H∞(p) ⊂ H∞(q).

exam This follows from optional stopping theorem applied to the p-martingale
(u(Xn) : n ∈ Z+), when u ∈ H∞(p).

What about the other inclusion ?
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About the other inclusion.

It is usually false. Why ?

Example.

I S = Z, and item

p(x, y) =

{
1
2 (1 + ε) y = x + 1
1
2 (1− ε) y = x − 1

I This is a random walk on an abelian group so Poisson boundary is a single point,
and H∞(p) contains only constants (this can be proved directly with an argument
similar to Example 1.)

I Take τ = 2. Note that X2n+2 is either X2n or X2n ± 2. Therefore

u(x) = 12Z(x) and 12Z+1(x) ∈ H∞(q),

but not in H∞(p).

So what is the “right” inclusion ?

12/ 16

reset



Poisson Boundary

Introduction

Limits as invariant
events

Construction

Two examples

Isometry

Our work

Motivation

Transformed MC

Adding time

Our result

Corollary on harmonic
functions

Adding time to the mix

Consider now another transition function on Z+ × S, obtained from p:

p + ((m, x), (n, y)) = δn,m+1p(x, y).

Let Z denote the corresponding MC. Here is a simple fact.

I The tail σ-algebra of X , T is equal to the invariant σ-algebra for Z , IZ .

To give a little feeling think of the event

{X2n ∈ C for all n large enough}

I This is clearly in T but not in I, as shifting the paths gives a new statement: not
on odd times but on even times.

I For Z this is an invariant event because the “time” is included in the path, and
shifting has no affect on the meaning.
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Our result

Recall that H∞(p) ⊂ H∞(q). We’re trying to get some associated “reverse” inclusion.
In general this is not possible.

The following theorem gives us a sufficient condition.

Theorem 1
Let ρ be a Z+v random variable. For each n ∈ N, let

ρn = n + ρ ◦ θn.

If for all x ∈ S, lim supn→∞ Px (ρn ∈ 〈τ〉) = 1, then

IY ⊂ T X
.

Idea of proof.

I if we can guess what large times are in 〈τ〉 with asymptotic certainty just from the
tail of the path, then the invariant σ-algebra of Y , which is determined by X
evaluated at along 〈τ〉 is in the tail σ-algebra of X .

Remarks. In our paper (soon on ArXiv) we provide an array of examples, including

I Deterministic τ .

I τ is hitting time of a recurrent set.

I Application for stopping times for semigroups, and randomized stopping time

I Example where condition does hold by Px (ρn ∈ 〈τ〉) < 1 for all x and all n.

I Example where condition cannot hold for any choice of ρ.
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What Theorem says about harmonic functions

Corollary 1

Under the assumption in the theorem, H∞(q) is isometrically embedded in H∞(p+).

Proof.

I Consider h ∈ H∞(q).

I Then h(Yn) converges Px -a.s. to a IY -measurable random variable h(Y∞).

I From the theorem this is also in T X = IZ .

I Let Th(n, x) = EZ
n,x [h(Y∞)]. Then

I Th ∈ H∞(p+).
I Since |h(Y∞)| ≤ ‖h‖∞, ‖Th‖∞ ≤ ‖h‖∞.
I But Th(0, x) = h(x), therefore ‖Th‖∞ ≥ ‖h‖∞.
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Tighter inclusions

When is H∞(p+) isometric to H∞(p), namely when are all elements in H∞(p+)
constant in time ?

I If
lim

n→∞
‖pn(x, ·)− pn+1(x, ·)‖TV = 0, for all x.

I The above condition is automatically satisfied if p(x, x) = 1
2 (or any other positive

constant) for all x .

When one of the conditions holds, then Corollary 1 gives

H∞(p) = H∞(q).
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Obrigado. Grazie. Thank you.
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