From Linear Recurrences to Random Signals, and Back Sailesh Simhadri ${ }^{1}$ (advised by Iddo Ben-Ari²)

${ }^{1}$ Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
${ }^{2}$ Department of Mathematics, University of Connecticut, Storrs, CT, USA

Linear Recurrence Bnumeration Systems

Decomposition of positive integers as linear combinations of elements in a linear recurrence.

Consider a linear recurrence of length L with nonnegative integer coefficients $G_{n+1}=c_{1} G_{n}+\ldots c_{n} G_{n-L+1}$ with $G_{1}=1, G_{2}=2, \ldots, G_{L-1}=L-1, G_{L}=L$

Examples.

- Decimal: $G_{n+1}=10 G_{n}$
$11=1^{*} G_{2}+1^{*} G_{1}$
- Binary: $\mathrm{G}_{\mathrm{n}+1}=2 \mathrm{G}_{\mathrm{n}}$.
$11=1^{*} G_{4}+0^{*} G_{3}+1^{*} G_{2}+1^{*} G_{1} \Rightarrow 1011$
- Zeckendorf: $G_{n+1}=G_{n}+G_{n-1}$ (Fibonacci sequence, $L=2$)
- $G_{1}=1, G_{2}=2, G_{3}=3, G_{4}=5, G_{5}=8$,
- $11=1^{*} G_{5}+0^{*} G_{4}+1^{*} G_{3}+0^{*} G_{2}+0^{*} G_{1} \Rightarrow 10100$

Theorem. Every positive integer n , there exists a unique decomposition $\mathrm{m}=\mathrm{X}_{1} \mathrm{G}$ $+X_{2} G_{n-1}+\ldots X_{n} G_{1}$, "dominated" by the recurrence

Proof. Greedy algorithm, refer to [Miller and Wang 2012] and the references within

Random Source

Random source.

Sample uniformly a number m in $\left[G_{n}, G_{n+1}\right)$ for some large n, yielding a random process $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of the coefficients $\left(c_{i}\right)$ in the decomposition of m.

Example.

Zeckendorf decomposition.
Sampling uniformly between $\left[G_{2}, G_{3}\right)=[3,5) .3=0100,4=0101$
Then, random sequence is either 0100 or 01010 . We will be looking at sequences for a larger n .

In general, the resulting process is not IID, and not even Markovian.

Example

Consider the recurrence relation $G_{n+1}=2 G_{n}+2 G_{n+1}+G_{n-2}$
If $X_{j}=2$ then, depending on where j is, X_{j+1}^{n+1} may take any value in $\{0,1,2\}$ or only the value 0 .

Legal Sequences.

- Start from $\mathrm{j}=0$ (beginning of X) and $\mathrm{i}=1$ (position within a word).
- No X_{i} is bigger than any c_{i}
X) and $i=1$
- If $X_{j}<c_{i}$, set i to one, starting a new word.
- There is never an instance of consecutive c_{1} to c_{n} in the sequence.

Question

Looking at a long sequence from a random source, can you tell if the source is a Zeckendorf? If so, what is the recurrence?

Theorem

Definition

Let R_{1} denote the recurrence relation
$G_{n+1}=c_{1} G_{n}+\ldots+c_{L} G_{n-L+q}$, and let R_{2} denote the recurrence relation
$G_{n+1}=d_{1} G_{n}+\ldots+d_{k} G_{n-k+1}$, where, without loss of generality, $K \geq L$.
We say that R_{2} and R_{1} are equivalent

1) If K is an integer multiple of L; and

The equivalence class of R_{1} is all recurrence relations equivalent to R_{1}
Example.
$R_{1}: G_{n+1}=1^{*} G_{n}+1^{*} G_{n-1}$ and $R_{2}: G_{n+1}=1 * G_{n}+0^{*} G_{n-1}+1^{*} G_{n-2}+1^{*} G_{n-3}$ are equivalent.
Theorem [Ben-Ari, Simhadri]
a) If R_{1} and R_{2} are equivalent then signals from either sources are indistinguishable. Given a source corresponding to some recurrence relation, there exists an
algorithm that uniquely determines its equivalence class.

Algorithm

We assume our source is some unknown recurrence
For $i=0,1,2, \ldots$ (while sequence is legal with respect to current guessed recurrence)

Determine c , by looking at the maximal element after multiple zeros followed by $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{i}-1}\left(000 \mathrm{c}_{1} \mathrm{c}_{2} \ldots \mathrm{c}_{\mathrm{i}-1}\right)$. Check consistency by seeing if the recurrence $\mathrm{c}_{1}, \mathrm{c}_{2}$,
b. Generate random sequences of the source corresponding to the recurrence. $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots,\left(\mathbf{c}_{\mathbf{i}}+\mathbf{1}\right)$. See if the proportions of c_{i} for $\mathrm{j}=1, \ldots, \mathrm{i}$ are the same for this generated sequence as the experimental. If not, repeat loop to find c_{i+1}
c. Return the recurrence $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots,\left(\mathrm{c}_{\mathrm{i}}+1\right)$.

Note: There is a faster algorithm for monotonic sequences that does not rely on the usage of probabilities.

Example.
$X=1001010010001010100$ Consistent with $c_{1}=$.
4. After rumtiple zeros and 1 , the next element is 0 .

Therefore, $\mathrm{C}_{2}=0 .($ Add 1 in next step)
Sequence is
consistent with
and
5. Sequence is consistent with $c_{1}=1, c_{2}=1$
6. Probability check passes, so return recurrence.

Motivating Example
$G_{n}=2 G_{n-1}+3 G_{n-2}$
$G_{n}=3 G_{n-1}$
III III
The graphs above are from simulations of equivalent recurrences. Note how second recurrence, and holds for the first one due to the equivalence.
$G_{n}=2 G_{n-1}+2 G_{n-2}$

Although sequences generated by this recurrence are all legal for the pair of equivalent recurrences above, the statistics are clearly different. Also, the proportions of bits and starting bits no longer coincide.

Why Zeckendorf

- Sequences have more structure, allowing for better error detection
- More relevant for modeling signals with inherent structure. Models constraints or "grammar":
- Never have two consecutive ones (Zeckendorf), see below.

A sequence generated from a source given by the Zeckendorf decomposition. The following was first proved in [Lekkerkerker]:

The (asymptotic) proportion of ones is $1 /(\phi+2)$ ~= 2764

As a result, the proportion of words starting with one is $1 /(\phi+1) \sim=.382$
Where $\phi=(1+\sqrt{ } 5) / 2$ is the Golden Ratio.

