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Linear Recurrence Enumeration Systems

Random Source

Question
Decomposition of positive integers as linear combinations of elements in a linear 
recurrence.

Consider a linear recurrence of length L with nonnegative integer coefficients: 
     Gn+1 = c1 Gn + … cn Gn-L+1   with G1=1, G2=2, ... , GL-1=L-1, GL=L

Examples.
● Decimal: Gn+1 = 10Gn.

○ 11 = 1*G2 + 1*G1

● Binary: Gn+1 = 2 Gn. 

○ 11 = 1*G4  + 0*G3+ 1*G2 + 1*G1 ⟹ 1011 

● Zeckendorf: Gn+1 =Gn + Gn-1 (Fibonacci sequence,  L=2)

○ G1 =1, G2=2, G3=3, G4=5, G5=8,…

○ 11 = 1* G5 + 0*G4 + 1*G3 + 0* G2+ 0 * G1 ⟹ 10100

Theorem. Every positive integer n, there exists a unique decomposition  m = X1 Gn 
+ X2 Gn-1 +... XnG1, ”dominated” by the recurrence. 

Proof. Greedy algorithm, refer to [Miller and Wang 2012] and the references within. 

Random source. 
Sample uniformly a number m in  [Gn,Gn+1) for some large n, yielding a random 
process X=(X1,X2,...,Xn) of the coefficients (ci) in the decomposition of m.

Example.
Zeckendorf decomposition. 
Sampling uniformly between [G2, G3) = [3, 5). 3=0100, 4=0101
Then, random sequence is either 0100 or 01010. We will be looking at sequences 
for a larger n.

In general, the resulting process is not IID, and not even Markovian.

Example.
Consider the recurrence relation Gn+1= 2Gn +2Gn+1+Gn-2 
If Xj=2 then, depending on where j is, Xj+1 may take any value in {0,1,2} or only the 
value 0. 

Legal Sequences.
● Start from j=0 (beginning of X) and i=1 (position within a word). 
● No Xj is bigger than any  ci.
● If Xj < ci, set i to one, starting a new word. 
● There is never an instance of consecutive c1 to cn in the sequence. 

Looking at a long sequence from a random source, can you tell if the source is a 
Zeckendorf? If so, what is the recurrence?

Theorem
Definition. 
Let R1 denote the recurrence relation
Gn+1 = c1 Gn + … +cL Gn-L+q, and let R2 denote the recurrence relation 
Gn+1 = d1 Gn + … + dK Gn-K+1, where, without loss of generality,  K≥ L. 
We say that R2 and  R1  are equivalent if 
1) If K is an integer multiple of L; and 
2)  (d1,...,dK) =(c1,...,cL-1,...,c1,...,cL-1,c1,...,cL) 
The equivalence class of R1 is all recurrence relations equivalent to R1. 

Example. 
R1: Gn+1  = 1*Gn + 1*Gn-1 and  R2: Gn+1 = 1*Gn + 0*Gn-1+1*Gn-2 +1*Gn-3 are equivalent. 

Theorem [Ben-Ari, Simhadri] 
a) If R1 and R2 are equivalent then signals from either sources are indistinguishable. 
b) Given a source corresponding to some recurrence relation, there exists an 

algorithm that uniquely determines its equivalence class. 

Algorithm

We assume our source is some unknown recurrence. 

For i=0,1,2,... (while sequence is legal with respect to current guessed 
recurrence)

a. Determine ci by looking at the maximal element after multiple zeros 
followed by c1, c2, …, ci-1 (000c1c2...ci-1). Check consistency by seeing if 
the recurrence c1,c2,…,(ci+1) can produce the output legally. If not, 
repeat loop to find ci+1.

b. Generate random sequences of the source corresponding to the 
recurrence. c1,c2,…,(ci+1). See if the proportions of cj for j=1,...,i are the 
same for this generated sequence as the experimental. If not, repeat loop 
to find ci+1.

c. Return the recurrence c1,c2,…,(ci+1).

Note: There is a faster algorithm for monotonic sequences that does not rely on 
the usage of probabilities.

Example. 
   X = 1001010010001010100

Why Zeckendorf
● Sequences have more structure, allowing for better error detection.
● More relevant for modeling signals with inherent structure. Models constraints 

or  “grammar”:
○ Never have two consecutive ones (Zeckendorf),  see below. 

Motivating Example

 

10010100100010101000001010000010001010010010
00000000000100000101010100000001000000100001
00001001010100010000101001001010010100000100
00100100100010001000000000010001010000001010
01001000000010000010001010010100100010001000
10001000101000100100101001001000010001010101
01010010000000010000010000010100101000000010
00000001001000000001010100000100100001001000
00010010100000000000100000000101010010100000
10010010100000001001001001010101000000100000
01001000000100010100100010101000000001010001
00010000001001010010100100010010000001001000
01000001010000100000101010000000100100010010
00001010101010000100000100100100100100101010
01001010010010000000010010000000101000010101
01010010010101000001000101000001000001010100
00100100100010010001001010010000101010000000
01010100001001001000010101000100100001010100
10000001010100001000100001001001010100101010
00100101010100010100010000010010001010001010
1000100101010000001010000100

A sequence generated from a source given by 
the Zeckendorf decomposition. The following  
was first proved in [Lekkerkerker]:

The (asymptotic) proportion of ones is  1/(ɸ+2) 
~= .2764 

As a result, the proportion of words starting with 
one is  1/(ɸ+1)~=.382

Where ɸ = (1+√5) ⁄ 2 is the Golden Ratio. 

Gn=2Gn-1+3Gn-2

 Gn=3Gn-1

1. After multiple zeros (bolded), there is a 1⟹ c1=1
2. Consistent with c1=2.
3. Probability check fails.
4. After multiple zeros and 1, the next element is 0. 

Therefore, c2=0. (Add 1 in next step) 
5. Sequence is consistent with c1=1, c2=1
6. Probability check passes, so return recurrence.

The graphs above are from simulations of equivalent recurrences. Note how 
the proportions of bits and starting bits coincide. This is obvious for the 
second recurrence, and holds for the first one due to the equivalence. 
  

 Gn=2Gn-1+2Gn-2

Although sequences generated by this recurrence are all legal for the pair of 
equivalent recurrences above, the statistics are clearly different. Also, the 
proportions of bits and starting bits no longer coincide. 


